Two-year outcomes of Whānau Pakari: a novel home-based intervention for child and adolescent obesity

2019 ◽  
Vol 13 (3) ◽  
pp. 274-275
Author(s):  
Yvonne Anderson ◽  
Lisa Wynter ◽  
Cameron Grant ◽  
Cervantée Wild ◽  
Niamh O'Sullivan ◽  
...  
Obesity ◽  
2017 ◽  
Vol 25 (11) ◽  
pp. 1965-1973 ◽  
Author(s):  
Yvonne C. Anderson ◽  
Lisa E. Wynter ◽  
Cameron C. Grant ◽  
Tami L. Cave ◽  
José G. B. Derraik ◽  
...  

Children ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 196
Author(s):  
Ioanna Maligianni ◽  
Christos Yapijakis ◽  
Flora Bacopoulou ◽  
George Chrousos

Child and adolescent obesity constitute one of the greatest contemporary public health menaces. The enduring disproportion between calorie intake and energy consumption, determined by a complex interaction of genetic, epigenetic, and environmental factors, finally leads to the development of overweight and obesity. Child and adolescent overweight/obesity promotes smoldering systemic inflammation (“para-inflammation”) and increases the likelihood of later metabolic and cardiovascular complications, including metabolic syndrome and its components, which progressively deteriorate during adulthood. Exosomes are endosome-derived extracellular vesicles that are secreted by a variety of cells, are naturally taken-up by target cells, and may be involved in many physiological and pathological processes. Over the last decade, intensive research has been conducted regarding the special role of exosomes and the non-coding (nc) RNAs they contain (primarily micro (mi) RNAs, long (l) non-coding RNAs, messenger (m) RNAs and other molecules) in inter-cellular communications. Through their action as communication mediators, exosomes may contribute to the pathogenesis of obesity and associated disorders. There is increasing evidence that exosomal miRNAs and lncRNAs are involved in pivotal processes of adipocyte biology and that, possibly, play important roles in gene regulation linked to human obesity. This review aims to improve our understanding of the roles of exosomes and their cargo in the development of obesity and related metabolic and inflammatory disorders. We examined their potential roles in adipose tissue physiology and reviewed the scarce data regarding the altered patterns of circulating miRNAs and lncRNAs observed in obese children and adolescents, compared them to the equivalent, more abundant existing findings of adult studies, and speculated on their proposed mechanisms of action. Exosomal miRNAs and lncRNAs could be applied as cardiometabolic risk biomarkers, useful in the early diagnosis and prevention of obesity. Furthermore, the targeting of crucial circulating exosomal cargo to tissues involved in the pathogenesis and maintenance of obesity could provide a novel therapeutic approach to this devastating and management-resistant pandemic.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Eric Jutkowitz ◽  
Laura N. Gitlin ◽  
Laura T. Pizzi ◽  
Edward Lee ◽  
Marie P. Dennis

Evaluating cost effectiveness of interventions for aging in place is essential for adoption in service settings. We present the cost effectiveness of Advancing Better Living for Elders (ABLE), previously shown in a randomized trial to reduce functional difficulties and mortality in 319 community-dwelling elders. ABLE involved occupational and physical therapy sessions and home modifications to address client-identified functional difficulties, performance goals, and home safety. Incremental cost-effectiveness ratio (ICER), expressed as additional cost to bring about one additional year of life, was calculated. Two models were then developed to account for potential cost differences in implementing ABLE. Probabilistic sensitivity analyses were conducted to account for variations in model parameters. By two years, there were 30 deaths (9: ABLE; 21: control). Additional costs for 1 additional year of life was $13,179 for Model 1 and $14,800 for Model 2. Investment in ABLE may be worthwhile depending on society's willingness to pay.


Sign in / Sign up

Export Citation Format

Share Document