The key role of acceptor moieties on the structural and the electronic properties of thermally activated delayed fluorescence emitters in excited states: A computational study

2020 ◽  
Vol 78 ◽  
pp. 105595 ◽  
Author(s):  
Sunwoo Kang ◽  
Sang Ho Jeon ◽  
Young Mi Cho ◽  
Yong Jo Kim ◽  
Taekyung Kim ◽  
...  
2022 ◽  
Author(s):  
Leonardo Evaristo de Sousa ◽  
Piotr de Silva

Thermally activated delayed fluorescence (TADF) is a phenomenon that relies on the upconversion of triplet excitons to singlet excitons by means of reverse intersystem crossing (rISC). It has been shown both experimentally and theoretically that the TADF mechanism depends on the interplay between charge transfer and local excitations. However, the difference between the diabatic and adiabatic character of the involved excited states is rarely discussed in the literature. Here, we develop a diabatization procedure to implement a 4-state model Hamiltonian to a set of TADF molecules. We provide physical interpretation for the Hamiltonian elements and show their dependence on the electronic state of the equilibrium geometry. We also demonstrate how vibrations affect TADF efficiency by modifying the diabatic decomposition of the molecule. Finally, we provide a simple model that connects the diabatic Hamiltonian to the electronic properties relevant to TADF and show how such relationship translates into different optimization strategies for rISC, fluorescence and overall TADF performance.


2016 ◽  
Vol 3 (12) ◽  
pp. 1600080 ◽  
Author(s):  
Fernando B. Dias ◽  
Jose Santos ◽  
David R. Graves ◽  
Przemyslaw Data ◽  
Roberto S. Nobuyasu ◽  
...  

2020 ◽  
Author(s):  
Masaki Saigo ◽  
Kiyoshi Miyata ◽  
Hajime Nakanotani ◽  
Chihaya Adachi ◽  
Ken Onda

We have investigated the solvent-dependence of structural changes along with intersystem crossing of a thermally activated delayed fluorescence (TADF) molecule, 3,4,5-tri(9H-carbazole-9-yl)benzonitrile (o-3CzBN), in toluene, tetrahydrofuran, and acetonitrile solutions using time-resolved infrared (TR-IR) spectroscopy and DFT calculations. We found that the geometries of the S1 and T1 states are very similar in all solvents though the photophysical properties mostly depend on the solvent. In addition, the time-dependent DFT calculations based on these geometries suggested that the thermally activated delayed fluorescence process of o-3CzBN is governed more by the higher-lying excited states than by the structural changes in the excited states.<br>


2015 ◽  
Vol 119 (45) ◽  
pp. 25591-25597 ◽  
Author(s):  
Eric Hontz ◽  
Wendi Chang ◽  
Daniel N. Congreve ◽  
Vladimir Bulović ◽  
Marc A. Baldo ◽  
...  

2020 ◽  
Vol 4 (12) ◽  
pp. 3602-3615 ◽  
Author(s):  
Jonathan S. Ward ◽  
Andrew Danos ◽  
Patrycja Stachelek ◽  
Mark A. Fox ◽  
Andrei S. Batsanov ◽  
...  

This work shows that trifluoromethyl (CF3) substituents can be used to increase the rate of thermally activated delayed fluorescence (TADF) in conjugated organic molecules by tuning the excitonic character of the singlet and triplet excited states.


Sign in / Sign up

Export Citation Format

Share Document