Assimilation of CO2 by soil microorganisms and transformation into soil organic matter

2004 ◽  
Vol 35 (9) ◽  
pp. 1015-1024 ◽  
Author(s):  
Anja Miltner ◽  
Hans-Hermann Richnow ◽  
Frank-Dieter Kopinke ◽  
Matthias Kästner
2020 ◽  
Author(s):  
Anja Miltner ◽  
Tiantian Zheng ◽  
Chao Liang ◽  
Matthias Kästner

<p>The vital role of soil microorganisms as catalysts for soil organic matter (SOM) formation has long been recognised. Plant residues are now considered to be transformed by soil microorganisms who use the plant litter as a carbon source for microbial biomass formation. How much carbon is retained as microbial biomass during transformation of plant material, critically depends on substrate availability, carbon use efficiency of the microorganisms, and maximum microbial growth. In addition, microorganisms presumably recycle biomass building blocks from plant or microbial material to avoid energy expenditure for biomass synthesis. After cell death, a part of the microbial necromass is cycling through the microbial food web; the other part is stabilised in soil (Miltner et al., 2012). Potential stabilisation mechanisms are similar to those for SOM in general, with organo-mineral interactions, in particular encapsulation and physical isolation, being important mechanisms. Independent of which pathway the plant-derived carbon goes, SOM constitutes a continuum of plant and microbial necromass at various stages of decay. The contribution of microbial necromass to the topsoil organic matter pool has recently been estimated to range from 30 to 60% (Liang et al., 2019). Such high contributions of microbial necromass have a number of important implications for understanding SOM transformation and sequestration processes. Most obviously, the chemical identity of the organic material changes. For example, while retaining a substantial part of the carbon, the elemental stoichiometry changes substantially. Some microbial necromass materials are rather long-lasting in soil. In general, cell envelope residues have a higher stability than bulk biomass carbon. Proteins have also been shown to be rather persistent in soil, presumably due to conformational changes and the spatial arrangement of microbial necromass material, e.g. fragments of cell envelopes presumably pile up in multiple layers and the material forms clusters of macromolecular size. Residual electron-shuttle biomolecules (e.g. oxidoreductases, Fe-S-cluster, quinoid complexes of respiratory chains) may persist and retain some activity and thus contribute to redox reactions in soil. In addition, the necromass is expected to cover soil particle surfaces and thus determine the surface properties of these particles. In particular, these materials contribute to the water storage potential. They affect water retention and nutrient diffusion as well as microbial motility. Adaption of microbes to water stress changes their cell surface properties and molecular composition and thus may determine overall soil wettability. Knowledge on the contribution of microbial necromass to SOM would thus be essential for modelling SOM formation and optimising soil management practices for maintaining soil functions.</p><p> </p><p>References:</p><p>Miltner A, Bombach P, Schmidt-Brücken B, Kästner M (2012) SOM genesis: Microbial biomass as a significant source. Biogeochemistry 111: 41-55.</p><p>Liang C, Amelung W, Lehmann J, Kästner M (2019) Quantitative assessment of microbial necromass contribution to soil organic matter. Global Change Biology 25: 3578-3590.</p>


2008 ◽  
Vol 3 (No. 1) ◽  
pp. 12-20 ◽  
Author(s):  
G. Mühlbachová

A 12-day incubation experiment with the addition of glucose to soils contaminated with persistent organic pollutants (POPs) was carried out in order to estimate the potential microbial activities and the potential of the soil microbial biomass C to degrade 1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane (DDT), polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAHs). The microbial activities were affected in different ways depending on the type of pollutant. The soil organic matter also played an important role. The microbial activities were affected particularly by high concentrations of PAHs in the soils. Soil microorganisms in the PAHs contaminated soil used the added glucose to a lesser extent than in the non-contaminated soil, which in the contaminated soil resulted in a higher microbial biomass content during the first day of incubation. DDT, DDD and DDE, and PCB affected the soil microbial activities differently and, in comparison with control soils, decreased the microbial biomass C during the incubation. The increased microbial activities led to a significant decrease of PAH up to 44.6% in the soil long-term contaminated with PAHs, and up to 14% in the control soil after 12 days of incubation. No decrease of PAHs concentrations was observed in the soil which was previously amended with sewage sludges containing PAHs and had more organic matter from the sewage sludges. DDT and its derivates DDD and DDE decreased by about 10%, whereas the PCB contents were not affected at all by microbial activities. Studies on the microbial degradation of POPs could be useful for the development of methods focused on the remediation of the contaminated sites. An increase of soil microbial activities caused by addition of organic substrates can contribute to the degradation of pollutants in some soils. However, in situ biodegradation may be limited because of a complex set of environmental conditions, particularly of the soil organic matter. The degradability and availability of POPs for the soil microorganisms has to be estimated individually for each contaminated site.


2013 ◽  
Vol 790 ◽  
pp. 467-470 ◽  
Author(s):  
Lu Lu Kong ◽  
Qi Xing Zhou

Biochar is receiving increasing attention as a promising functional material in contaminated soil remediation. However, aging processes of biochar can usually take place and affect its remediation function, because surface properties of biochar are expected to change through a variety of biotic and abiotic processes. In this review, some important influencing factors of biochar aging processes were discussed, including temperature, and soil-physical, soil-chemical and soil-biological components. It pointed out that biochar aging processes may be promoted by high temperature, protected by soil components, particularly soil organic matter (SOM), and interactions with soil microorganisms. To further prolong application of biochar in nature, biochar aging can be mitigated by its influencing factors.


1962 ◽  
Vol 54 (5) ◽  
pp. 470-470
Author(s):  
T. M. McCalla

Sign in / Sign up

Export Citation Format

Share Document