Differential temperature and pH controls on the abundance and composition of H-GDGTs in terrestrial hot springs

2014 ◽  
Vol 75 ◽  
pp. 109-121 ◽  
Author(s):  
Chengling Jia ◽  
Chuanlun L. Zhang ◽  
Wei Xie ◽  
Jin-Xiang Wang ◽  
Fuyan Li ◽  
...  
2021 ◽  
Vol 9 (7) ◽  
pp. 1473
Author(s):  
Ani Saghatelyan ◽  
Armine Margaryan ◽  
Hovik Panosyan ◽  
Nils-Kåre Birkeland

The microbial diversity of high-altitude geothermal springs has been recently assessed to explore their biotechnological potential. However, little is known regarding the microbiota of similar ecosystems located on the Armenian Highland. This review summarizes the known information on the microbiota of nine high-altitude mineralized geothermal springs (temperature range 25.8–70 °C and pH range 6.0–7.5) in Armenia and Nagorno-Karabakh. All these geothermal springs are at altitudes ranging from 960–2090 m above sea level and are located on the Alpide (Alpine–Himalayan) orogenic belt, a seismically active region. A mixed-cation mixed-anion composition, with total mineralization of 0.5 mg/L, has been identified for these thermal springs. The taxonomic diversity of hot spring microbiomes has been examined using culture-independent approaches, including denaturing gradient gel electrophoresis (DGGE), 16S rRNA gene library construction, 454 pyrosequencing, and Illumina HiSeq. The bacterial phyla Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes are the predominant life forms in the studied springs. Archaea mainly include the phyla Euryarchaeota, Crenarchaeota, and Thaumarchaeota, and comprise less than 1% of the prokaryotic community. Comparison of microbial diversity in springs from Karvachar with that described for other terrestrial hot springs revealed that Proteobacteria, Bacteroidetes, Actinobacteria, and Deinococcus–Thermus are the common bacterial groups in terrestrial hot springs. Contemporaneously, specific bacterial and archaeal taxa were observed in different springs. Evaluation of the carbon, sulfur, and nitrogen metabolism in these hot spring communities has revealed diversity in terms of metabolic activity. Temperature seems to be an important factor in shaping the microbial communities of these springs. Overall, the diversity and richness of the microbiota are negatively affected by increasing temperature. Other abiotic factors, including pH, mineralization, and geological history, also impact the structure and function of the microbial community. More than 130 bacterial and archaeal strains (Bacillus, Geobacillus, Parageobacillus, Anoxybacillus, Paenibacillus, Brevibacillus Aeribacillus, Ureibacillus, Thermoactinomyces, Sporosarcina, Thermus, Rhodobacter, Thiospirillum, Thiocapsa, Rhodopseudomonas, Methylocaldum, Desulfomicrobium, Desulfovibrio, Treponema, Arcobacter, Nitropspira, and Methanoculleus) have been reported, some of which may be representative of novel species (sharing 91–97% sequence identity with their closest matches in GenBank) and producers of thermozymes and biomolecules with potential biotechnological applications. Whole-genome shotgun sequencing of T. scotoductus K1, as well as of the potentially new Treponema sp. J25 and Anoxybacillus sp. K1, were performed. Most of the phyla identified by 16S rRNA were also identified using metagenomic approaches. Detailed characterization of thermophilic isolates indicate the potential of the studied springs as a source of biotechnologically valuable microbes and biomolecules.


Extremophiles ◽  
2018 ◽  
Vol 22 (4) ◽  
pp. 687-698 ◽  
Author(s):  
Lucy C. Stewart ◽  
Valerie K. Stucker ◽  
Matthew B. Stott ◽  
Cornel E. J. de Ronde

Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 4023
Author(s):  
Roberta Iacono ◽  
Beatrice Cobucci-Ponzano ◽  
Federica De Lise ◽  
Nicola Curci ◽  
Luisa Maurelli ◽  
...  

Terrestrial hot springs are of great interest to the general public and to scientists alike due to their unique and extreme conditions. These have been sought out by geochemists, astrobiologists, and microbiologists around the globe who are interested in their chemical properties, which provide a strong selective pressure on local microorganisms. Drivers of microbial community composition in these springs include temperature, pH, in-situ chemistry, and biogeography. Microbes in these communities have evolved strategies to thrive in these conditions by converting hot spring chemicals and organic matter into cellular energy. Following our previous metagenomic analysis of Pisciarelli hot springs (Naples, Italy), we report here the comparative metagenomic study of three novel sites, formed in Pisciarelli as result of recent geothermal activity. This study adds comprehensive information about phylogenetic diversity within Pisciarelli hot springs by peeking into possible mechanisms of adaptation to biogeochemical cycles, and high applicative potential of the entire set of genes involved in the carbohydrate metabolism in this environment (CAZome). This site is an excellent model for the study of biodiversity on Earth and biosignature identification, and for the study of the origin and limits of life.


Author(s):  
P. Aguiar ◽  
T. J. Beveridge ◽  
A.-L. Reysenbach

Five hydrogen-oxidizing, thermophilic, strictly chemolithoautotrophic, microaerophilic strains, with similar (99–100 %) 16S rRNA gene sequences were isolated from terrestrial hot springs at Furnas, São Miguel Island, Azores, Portugal. The strain, designated Az-Fu1T, was characterized. The motile, 0·9–2·0 μm rods were Gram-negative and non-sporulating. The temperature growth range was from 50 to 73 °C (optimum at 68 °C). The strains grew fastest in 0·1 % (w/v) NaCl and at pH 6, although growth was observed from pH 5·5 to 7·0. Az-Fu1T can use elemental sulfur, sulfite, thiosulfate, ferrous iron or hydrogen as electron donors, and oxygen (0·2–9·0 %, v/v) as electron acceptor. Az-Fu1T is also able to grow anaerobically, with elemental sulfur, arsenate and ferric iron as electron acceptors. The Az-Fu1T G+C content was 33·6 mol%. Maximum-likelihood analysis of the 16S rRNA phylogeny placed the isolate in a distinct lineage within the Aquificales, closely related to Sulfurihydrogenibium subterraneum (2·0 % distant). The 16S rRNA gene of Az-Fu1T is 7·7 % different from that of Persephonella marina and 6·8 % different from Hydrogenothermus marinus. Based on the phenotypic and phylogenetic characteristics presented here, it is proposed that Az-Fu1T belongs to the recently described genus Sulfurihydrogenibium. It is further proposed that Az-Fu1T represents a new species, Sulfurihydrogenibium azorense.


Extremophiles ◽  
2010 ◽  
Vol 14 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Zhao-Qi Song ◽  
Jing-Quan Chen ◽  
Hong-Chen Jiang ◽  
En-Min Zhou ◽  
Shu-Kun Tang ◽  
...  

2019 ◽  
Vol 140 ◽  
pp. 224-232 ◽  
Author(s):  
Lily Momper ◽  
Eileen Hu ◽  
Kelsey R. Moore ◽  
Emilie J. Skoog ◽  
Madeline Tyler ◽  
...  

Microbiology ◽  
2015 ◽  
Vol 84 (4) ◽  
pp. 577-583 ◽  
Author(s):  
A. Y. Merkel ◽  
O. A. Podosokorskaya ◽  
N. A. Chernyh ◽  
E. A. Bonch-Osmolovskaya

2003 ◽  
Vol 40 (11) ◽  
pp. 1713-1724 ◽  
Author(s):  
Kurt O Konhauser ◽  
Brian Jones ◽  
Anna-Louise Reysenbach ◽  
Robin W Renaut

The question of what composed the Earth's oldest fossils is the subject of current debate. At present, taphonomical determination of Archean silicified microfossils is largely based on morphological comparisons with extant microorganisms. This method has significant shortcomings because little is known about which types of bacteria silicify, what physical changes are induced on those species during mineralization, and, most importantly, what their preservation potential is. Terrestrial hot springs may help resolve these uncertainties because the silica-supersaturated geothermal fluids mineralize a wide variety of natural microbial communities and thus lead to the formation of numerous distinct biofacies. Some of these biofacies are reminiscent of Archean siliceous stromatolites from which the oldest microfossils were recovered. We suggest that by integrating molecular techniques that characterize the indigenous microbial populations growing in different biofacies with electron microscopy, we may be able to assess better what types of ancient microbes could have become fossilized.


1995 ◽  
Vol 17 (4) ◽  
pp. 526-532 ◽  
Author(s):  
Célia M. Manaia ◽  
Bart Hoste ◽  
M. Carmen Gutierrez ◽  
Monique Gillis ◽  
Antonio Ventosa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document