scholarly journals EMOCOV: Machine learning for emotion detection, analysis and visualization using COVID-19 tweets

2021 ◽  
Vol 23 ◽  
pp. 100135
Author(s):  
Md. Yasin Kabir ◽  
Sanjay Madria

Emotions are an inevitable and integral part of human existence. They form the basis of decisions taken by individuals and the way they perceive their surroundings. Method of articulation of emotions have changed with the increment in dependency between people and innovation. Now the need to recognize emotions has increased with the increasing role of human-Computer Interface (HCI) technology. There are many ways to record and identify human’s emotion using different neurophysiological measurements/ technologies like GSR(Galvanic Skin Response), Electromyography (EMG), Electrocardiogram (ECG) and Electroencephalography (EEG). In this paper, the focus is on emotion detection using EEG signals and other physiological signals and further analyzing them. There exist various machine learning techniques that have been used to pre-process and classify EEG data, have been reviewed in the paper. The analysis involves major aspects of the emotion recognition process like feature extraction, classification and comparison of the approaches. Different supervised machine learning algorithms have been applied to classify the EEG data. This paper focuses on comprehensive analysis of existing systems and based on the result propose the techniques which when applied will reap high-quality results.


Author(s):  
Mr. Bhavar Shivam S.

Today we do a lot of things online from shopping to data sharing on social networking sites. Social networking (SNS) is good for releasing stress and depression by sharing one’s thoughts. Thus, emotion detection has become a hot trend to day. But there is a problem in analyzing emotions on a SNS like twitter as it generates lakhs of tweets each day and it is hard to keep track of the emotion behind each tweet as it is impossible for a human being to read and decide the emotions behind tweets. So, to help understand behind the texts in a SNS site we thought of designing a project which will keep track of the tweets and predict the right emotion behind the tweets whether they have a positive or a negative sentiment behind them. This thought of project can be achieved by a integration of SNS with NLP and machine learning together. For SNS we will use Twitter as it generates a lot of data which is accessible freely using an API. First, we will enter a keyword and fetch tweets from the twitter. Then stop words will be removed from these tweets using NLTK stop words database. Then the tweets will be passed for POS tagging and only right form of grammatical words will be kept and others will be removed. Then we create a training dataset with two types positive and negative. Then SVM algorithm will be trained using this training dataset. Then each tweet will be passed to the SVM as testing dataset which in turn will return classification of each tweet as a whole in two classes positive and negative. Thus, our application will be helpful in recognizing emotion behind a tweet.


Author(s):  
Tarek Helmy

The system that monitors the events occurring in a computer system or a network and analyzes the events for sign of intrusions is known as intrusion detection system. The performance of the intrusion detection system can be improved by combing anomaly and misuse analysis. This chapter proposes an ensemble multi-agent-based intrusion detection model. The proposed model combines anomaly, misuse, and host-based detection analysis. The agents in the proposed model use rules to check for intrusions, and adopt machine learning algorithms to recognize unknown actions, to update or create new rules automatically. Each agent in the proposed model encapsulates a specific classification technique, and gives its belief about any packet event in the network. These agents collaborate to determine the decision about any event, have the ability to generalize, and to detect novel attacks. Empirical results indicate that the proposed model is efficient, and outperforms other intrusion detection models.


Sign in / Sign up

Export Citation Format

Share Document