Golgi transporters: opening the gate to cell wall polysaccharide biosynthesis

2008 ◽  
Vol 11 (3) ◽  
pp. 244-251 ◽  
Author(s):  
F REYES ◽  
A ORELLANA
2005 ◽  
Vol 391 (2) ◽  
pp. 409-415 ◽  
Author(s):  
Anna Kärkönen ◽  
Alain Murigneux ◽  
Jean-Pierre Martinant ◽  
Elodie Pepey ◽  
Christophe Tatout ◽  
...  

UDPGDH (UDP-D-glucose dehydrogenase) oxidizes UDP-Glc (UDP-D-glucose) to UDP-GlcA (UDP-D-glucuronate), the precursor of UDP-D-xylose and UDP-L-arabinose, major cell wall polysaccharide precursors. Maize (Zea mays L.) has at least two putative UDPGDH genes (A and B), according to sequence similarity to a soya bean UDPGDH gene. The predicted maize amino acid sequences have 95% similarity to that of soya bean. Maize mutants with a Mu-element insertion in UDPGDH-A or UDPGDH-B were isolated (udpgdh-A1 and udpgdh-B1 respectively) and studied for changes in wall polysaccharide biosynthesis. The udpgdh-A1 and udpgdh-B1 homozygotes showed no visible phenotype but exhibited 90 and 60–70% less UDPGDH activity respectively than wild-types in a radiochemical assay with 30 μM UDP-glucose. Ethanol dehydrogenase (ADH) activity varied independently of UDPGDH activity, supporting the hypothesis that ADH and UDPGDH activities are due to different enzymes in maize. When extracts from wild-types and udpgdh-A1 homozygotes were assayed with increasing concentrations of UDP-Glc, at least two isoforms of UDPGDH were detected, having Km values of approx. 380 and 950 μM for UDP-Glc. Leaf and stem non-cellulosic polysaccharides had lower Ara/Gal and Xyl/Gal ratios in udpgdh-A1 homozygotes than in wild-types, whereas udpgdh-B1 homozygotes exhibited more variability among individual plants, suggesting that UDPGDH-A activity has a more important role than UDPGDH-B in UDP-GlcA synthesis. The fact that mutation of a UDPGDH gene interferes with polysaccharide synthesis suggests a greater importance for the sugar nucleotide oxidation pathway than for the myo-inositol pathway in UDP-GlcA biosynthesis during post-germinative growth of maize.


1999 ◽  
Vol 37 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Gabriella Piro ◽  
Anna Montefusco ◽  
Daniela Pacoda ◽  
Giuseppe Dalessandro

Planta ◽  
2005 ◽  
Vol 221 (3) ◽  
pp. 309-312 ◽  
Author(s):  
Rachel A. Burton ◽  
Naser Farrokhi ◽  
Antony Bacic ◽  
Geoffrey B. Fincher

2021 ◽  
Author(s):  
Bo Yang ◽  
Gina Stamm ◽  
Katharina Bürstenbinder ◽  
Cătălin Voiniciuc

Arabidopsis seeds release large capsules of mucilaginous polysaccharides, which are shaped by an intricate network of cellulosic microfibrils. Cellulose synthase complexes is guided by the microtubule cytoskeleton, but it is unclear which proteins mediate this process in the seed coat epidermis (SCE). Using reverse genetics, we identified IQ67 DOMAIN 9 (IQD9) and KINESIN LIGHT CHAIN-RELATED 1 (KLCR1) as two highly expressed genes during seed development and comprehensively characterized their roles for cell wall polysaccharide biosynthesis and cortical microtubule (MT) organization. Mutations in IQD9 as well as in KLCR1 lead to compact mucilage capsules with aberrant cellulose distribution, which can be rescued by transgene complementation. Double mutant analyses revealed that their closest paralogs (IQD10 and KLCR2, respectively) are not required for mucilage biosynthesis. IQD9 physically interacts with KLCR1 and localizes to cortical MTs to maintain their organization in SCE cells. Similar to the previously identified TONNEAU1 (TON1) RECRUITING MOTIF 4 (TRM4) protein, IQD9 is required to maintain the velocity of cellulose synthases. Our results demonstrate that IQD9, KLCR1 and TRM4 are MT-associated proteins that are required for seed mucilage architecture. This study provides the first direct evidence that members of the IQD, KLCR and TRM families have overlapping roles in guiding the distribution of cell wall polysaccharides. Therefore, SCE cells provide an attractive system to further decipher the complex genetic regulation of polarized cellulose deposition.


2018 ◽  
Author(s):  
Beibei Jing ◽  
Toshiki Ishikawa ◽  
Nicole Soltis ◽  
Noriko Inada ◽  
Yan Liang ◽  
...  

AbstractThe Golgi lumen is the site of many different glycosylation events, including cell wall polysaccharide biosynthesis and lipid glycosylation. Transporters are necessary for the import of the substrates required for glycosylation (nucleotide sugars) from the cytosol where they are synthesized. Plants use four GDP-linked sugars to glycosylate macromolecules: GDP-L-Fucose, GDP-D-Mannose, GDP-L-Galactose and GDP-D-Glucose. Of the predicted fifty-one members of the nucleotide sugar transporter/triose phosphate transporter family in Arabidopsis, only four appear to contain the conserved motif needed for the transport of GDP-linked sugars, GOLGI LOCALIZED NUCLEOTIDE SUGAR TRANSPORTER (GONST) 1-4. Previously, we have demonstrated that GONST1 provides GDP-D-Mannose for glycosylation of a class of sphingolipids, the glycosylinositolphosphorylceramides (GIPCs). Here, we characterize its closest homologue, GONST2, and conclude that it also specifically provides substrate for GIPC glycosylation. Expression of GONST2 driven by the GONST1 promoter is able to rescue the severe growth phenotype of gonst1. Loss of GONST2 exacerbates the gonst1 constitutive hypersensitive response, as well as the reduced cell wall cellulose content. The gonst2 mutant grows normally under standard conditions, but has enhanced resistance to the powdery mildew-causing fungus Golovinomyces orontii.


Sign in / Sign up

Export Citation Format

Share Document