seed mucilage
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 131)

H-INDEX

30
(FIVE YEARS 6)

2022 ◽  
Vol 89 ◽  
pp. 104943
Author(s):  
Susana Ribes ◽  
Marta Gallego ◽  
Jose M. Barat ◽  
Raúl Grau ◽  
Pau Talens

2021 ◽  
Author(s):  
Bo Yang ◽  
Gina Stamm ◽  
Katharina Bürstenbinder ◽  
Cătălin Voiniciuc

Arabidopsis seeds release large capsules of mucilaginous polysaccharides, which are shaped by an intricate network of cellulosic microfibrils. Cellulose synthase complexes is guided by the microtubule cytoskeleton, but it is unclear which proteins mediate this process in the seed coat epidermis (SCE). Using reverse genetics, we identified IQ67 DOMAIN 9 (IQD9) and KINESIN LIGHT CHAIN-RELATED 1 (KLCR1) as two highly expressed genes during seed development and comprehensively characterized their roles for cell wall polysaccharide biosynthesis and cortical microtubule (MT) organization. Mutations in IQD9 as well as in KLCR1 lead to compact mucilage capsules with aberrant cellulose distribution, which can be rescued by transgene complementation. Double mutant analyses revealed that their closest paralogs (IQD10 and KLCR2, respectively) are not required for mucilage biosynthesis. IQD9 physically interacts with KLCR1 and localizes to cortical MTs to maintain their organization in SCE cells. Similar to the previously identified TONNEAU1 (TON1) RECRUITING MOTIF 4 (TRM4) protein, IQD9 is required to maintain the velocity of cellulose synthases. Our results demonstrate that IQD9, KLCR1 and TRM4 are MT-associated proteins that are required for seed mucilage architecture. This study provides the first direct evidence that members of the IQD, KLCR and TRM families have overlapping roles in guiding the distribution of cell wall polysaccharides. Therefore, SCE cells provide an attractive system to further decipher the complex genetic regulation of polarized cellulose deposition.


2021 ◽  
Author(s):  
alireza allafchian ◽  
Shiva Saeedi ◽  
Seyed Amir Hossein Jalali

Abstract Synthesis of Balangu (Lallemantia royleana) seed mucilage (BSM) solutions combined with polyvinyl alcohol (PVA) was studied for the purpose of producing 3D electrospun cell culture scaffolds. Production of pure BSM nanofibers proved to be difficult, yet integration of PVA contributed to a facile and successful formation of BSM/PVA nanofibers. Different BSM/PVA ratios were fabricated to achieve the desired nanofibrous structure for cell proliferation. It is found that the optimal bead-free ratio of 50/50 with a mean fiber diameter of ≈180 nm presents the most desirable scaffold structure for cell growth. The positive effect of PVA incorporation was approved by analyzing BSM/PVA solutions through physiochemical assays such as electrical conductivity, viscosity and surface tension tests. According to the thermal analysis (TGA/DSC), incorporation of PVA enhanced thermal stability of the samples. Successful fabrication of the nanofibers is verified by FT-IR spectra, where no major chemical interaction between BSM and PVA is detected. The crystallinity of the electrospun nanofibers is investigated by XRD, revealing the nearly amorphous structure of BSM/PVA scaffolds. The MTT assay is employed to verify the biocompatibility of the scaffolds. The cell culture experiment using epithelial Vero cells shows the affinity of the cells to adhere to their nanofibrous substrate and grow to form continuous cell layers after 72 h of incubation.


Sign in / Sign up

Export Citation Format

Share Document