High level expression and purification of recombinant 3ABC non-structural protein of foot-and-mouth disease virus using SUMO fusion system

2021 ◽  
pp. 106025
Author(s):  
Muhammad Ashir Zia ◽  
Muhammad Salahuddin Shah ◽  
Rai Shafqat Ali Khan ◽  
Umer Farooq ◽  
Jamila Shafi ◽  
...  
2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Soumendu Chakravarti ◽  
Caroline Wright ◽  
Emma Howes ◽  
Richard Kock ◽  
Terry Jackson ◽  
...  

The picornavirus foot-and-mouth disease virus (FMDV) is responsible for one of the most significant diseases of livestock, leading to large economic losses due to reduced productivity and trade embargoes for areas not certified as disease-free. The picornavirus non-structural protein 3A is involved in replication of the viral RNA genome and is implicated in host tropism of several picornaviruses. Deletions in the C-terminus of 3A have been observed in FMDV outbreaks specific for swine and such viruses are non-pathogenic in cattle. The mechanism for species specific attenuation of FMDV is unknown. We have shown that FMDV containing a C-terminal deletion in 3A is attenuated in bovine cell culture and that the attenuated phenotype can be reversed by the JAK1/2 inhibitor Ruxolitinib (Rux), identifying a role for the induction of interferon stimulated genes (ISGs) in the restricted bovine tropism of the 3A-deleted virus.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Pakorn Aiewsakun ◽  
Nakarin Pamornchainavakul ◽  
Chaidate Inchaisri

Abstract In this study, we compiled 84-year worth (1934–2017) of genomic and epidemiological data of foot-and-mouth disease virus (FMDV), and performed comprehensive analyses to determine its early origin and transmission route. We found that recombination is a key feature of FMDV, and that the genomic regions coding for structural and non-structural proteins have markedly different evolutionary histories, and evolve at different rates. Despite all of these differences, analyses of both structural and non-structural protein coding regions consistently suggested that the most recent common ancestor of FMDV could be dated back to the Middle Age, ~ 200 to 300 years earlier than previously thought. The ancestors of the Euro-Asiatic and SAT strains could be dated back to the mid-seventeenth century, and to the mid-fifteenth to mid-sixteenth century, respectively. Our results implicated Mediterranean counties as an early geographical origin of FMDV before spreading to Europe and subsequently to Asia and South America.


2012 ◽  
Vol 27 (5) ◽  
pp. 316-319 ◽  
Author(s):  
Tong Lin ◽  
Junjun Shao ◽  
Huiyun Chang ◽  
Shandian Gao ◽  
Guozheng Cong ◽  
...  

2005 ◽  
Vol 25 (4) ◽  
pp. 329-333 ◽  
Author(s):  
Yinü Li ◽  
Meng Sun ◽  
Jixing Liu ◽  
Zongqi Yang ◽  
Zhifang Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document