Application of neural networks in multiphase flow through porous media: Predicting capillary pressure and relative permeability curves

2019 ◽  
Vol 180 ◽  
pp. 445-455 ◽  
Author(s):  
Siyan Liu ◽  
Arsalan Zolfaghari ◽  
Shariar Sattarin ◽  
Amirmasoud Kalantari Dahaghi ◽  
Shahin Negahban
Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050002
Author(s):  
KE CHEN ◽  
HE CHEN ◽  
PENG XU

The multiphase flow through unsaturated porous media and accurate estimation of relative permeability are significant for oil and gas reservoir, grounder water resource and chemical engineering, etc. A new fractal model is developed for the multiphase flow through unsaturated porous media, where multiscale pore structure is characterized by fractal scaling law and the trapped water in the pores is taken into account. And the analytical expression for relative permeability is derived accordingly. The relationships between the relative permeability and capillary head as well as saturation are determined. The proposed model is validated by comparison with 14 sets of experimental data, which indicates that the fractal model agrees well with experimental data. It has been found that the proposed fractal model shows evident advantages compared with BC-B model and VG-M model, especially for the porous media with fine content and texture. Further calculations show that water permeability decreases as the fractal dimension increases under fixed saturation because the cumulative volume fraction of small pores increases with the increment of the fractal dimension. The present fractal model for the relative permeability may be helpful to understand the multiphase flow through unsaturated porous media.


SPE Journal ◽  
2017 ◽  
Vol 22 (03) ◽  
pp. 940-949 ◽  
Author(s):  
Edo S. Boek ◽  
Ioannis Zacharoudiou ◽  
Farrel Gray ◽  
Saurabh M. Shah ◽  
John P. Crawshaw ◽  
...  

Summary We describe the recent development of lattice Boltzmann (LB) and particle-tracing computer simulations to study flow and reactive transport in porous media. First, we measure both flow and solute transport directly on pore-space images obtained from micro-computed-tomography (CT) scanning. We consider rocks with increasing degree of heterogeneity: a bead pack, Bentheimer sandstone, and Portland carbonate. We predict probability distributions for molecular displacements and find excellent agreement with pulsed-field-gradient (PFG) -nuclear-magnetic-resonance (NMR) experiments. Second, we validate our LB model for multiphase flow by calculating capillary filling and capillary pressure in model porous media. Then, we extend our models to realistic 3D pore-space images and observe the calculated capillary pressure curve in Bentheimer sandstone to be in agreement with the experiment. A process-based algorithm is introduced to determine the distribution of wetting and nonwetting phases in the pore space, as a starting point for relative permeability calculations. The Bentheimer relative permeability curves for both drainage and imbibition are found to be in good agreement with experimental data. Third, we show the speedup of a graphics-processing-unit (GPU) algorithm for large-scale LB calculations, offering greatly enhanced computing performance in comparison with central-processing-unit (CPU) calculations. Finally, we propose a hybrid method to calculate reactive transport on pore-space images by use of the GPU code. We calculate the dissolution of a porous medium and observe agreement with the experiment. The LB method is a powerful tool for calculating flow and reactive transport directly on pore-space images of rock.


AIChE Journal ◽  
2003 ◽  
Vol 49 (10) ◽  
pp. 2472-2486 ◽  
Author(s):  
C. D. Tsakiroglou ◽  
M. A. Theodoropoulou ◽  
V. Karoutsos

2018 ◽  
Vol 272 (1) ◽  
pp. 12-24
Author(s):  
M.N. D'EURYDICE ◽  
C.H. ARNS ◽  
J.-Y. ARNS ◽  
R.T. ARMSTRONG

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Amir H. Haghi* ◽  
Richard Chalaturnyk ◽  
Stephen Talman

Abstract Relative permeability and capillary pressure are the governing parameters that characterize multiphase fluid flow in porous media for diverse natural and industrial applications, including surface water infiltration into the ground, CO2 sequestration, and hydrocarbon enhanced recovery. Although the drastic effects of deformation of porous media on single-phase fluid flow have been well established, the stress dependency of flow in multiphase systems is not yet fully explored. Here, stress-dependent relative permeability and capillary pressure are studied in a water-wet carbonate specimen both analytically using fractal and poroelasticity theory and experimentally on the micro-scale and macro-scales by means of X-ray computed micro-tomography and isothermal isotropic triaxial core flooding cell, respectively. Our core flooding program using water/N2 phases shows a systematic decrease in the irreducible water saturation and gas relative permeability in response to an increase in effective stress. Intuitively, a leftward shift of the intersection point of water/gas relative permeability curves is interpreted as an increased affinity of the rock to the gas phase. Using a micro-scale proxy model, we identify a leftward shift in pore size distribution and closure of micro-channels to be responsible for the abovementioned observations. These findings prove the crucial impact of effective stress-induced pore deformation on multiphase flow properties of rock, which are missing from the current characterizations of multiphase flow mechanisms in porous media.


Sign in / Sign up

Export Citation Format

Share Document