Scope of sub basalt imaging using locally generated converted waves and mixed mode depth imaging: A study on real data

2021 ◽  
Vol 202 ◽  
pp. 108565
Author(s):  
Debashis Chatterjee ◽  
Priya Ranjan Mohanty ◽  
Rima Chatterjee ◽  
Sunil K. Singh
2019 ◽  
Vol 490 (1) ◽  
pp. 909-926 ◽  
Author(s):  
M S Cunha ◽  
P P Avelino ◽  
J Christensen-Dalsgaard ◽  
D Stello ◽  
M Vrard ◽  
...  

ABSTRACT The characterization of stellar cores may be accomplished through the modelling of asteroseismic data from stars exhibiting either gravity-mode or mixed-mode pulsations, potentially shedding light on the physical processes responsible for the production, mixing, and segregation of chemical elements. In this work, we validate against model data an analytical expression for the period spacing that will facilitate the inference of the properties of stellar cores, including the detection and characterization of buoyancy glitches (strong chemical gradients). This asymptotically based analytical expression is tested both in models with and without buoyancy glitches. It does not assume that glitches are small and, consequently, predicts non-sinusoidal glitch-induced period-spacing variations, as often seen in model and real data. We show that the glitch position and width inferred from the fitting of the analytical expression to model data consisting of pure gravity modes are in close agreement (typically better than 7 ${{\ \rm per\ cent}}$ relative difference) with the properties measured directly from the stellar models. In the case of fitting mixed-mode model data, the same expression is shown to reproduce well the numerical results, when the glitch properties are known a priori. In addition, the fits performed to mixed-mode model data reveal a frequency dependence of the coupling coefficient, q, for a moderate-luminosity red-giant-branch model star. Finally, we find that fitting the analytical expression to the mixed-mode period spacings may provide a way to infer the frequencies of the pure acoustic dipole modes that would exist if no coupling took place between acoustic and gravity waves.


2000 ◽  
Author(s):  
Bertram Nolte ◽  
Dwight V. Sukup ◽  
Paul M. Krail ◽  
Brandt O. Temple ◽  
Bill Cafarelli

2004 ◽  
Vol 52 (5) ◽  
pp. 427-438 ◽  
Author(s):  
Soazig Le Begat ◽  
Herve Chauris ◽  
Vincent Devaux ◽  
Sylvain Nguyen ◽  
Mark Noble

2020 ◽  
Author(s):  
Alexandrine Gesret

<p>The Receiver Function (RF) technique, that aims to isolate P to S teleseismic converted waves, is largely used to image seismic discontinuities at depth. In particular, in subduction zones, the subducting crust has often be identified on RF as a Low Velocity Layer (LVL) embedded between the mantle of the overriding plate and the mantle of the subducting lithosphere. In several subduction zones, a high Vp/Vs ratio inside this LVL has been estimated from the arrival times of the primary and backscattered P to S converted waves at the top and at the base of the LVL. However seismograms are filtered to enhance the signal over noise ratio and this processing step can dramatically reduce the resolution of the converted waves. In order to check if the signal periods associated to common filters could lead to an overestimation of the Vp/Vs ratio, a wavelet response in conversion for primary and backscattered converted waves is developed for a LVL typical of an oceanic crust. This multiscale analysis allows to illustrate that the LVL characteristics can be misinterpreted for the common frequency range due to interferences between the converted waves at the top and at the base of the LVL. For a dominant period of about 3s, the Vp/Vs of a typical oceanic crust can be largely overestimated (about Vp/Vs=2.8 instead of Vp/Vs=1.8) and its thickness underestimated (about 5 km instead of 7 km). The characteristics of a typical oceanic crust can be reliably retrieved only in the non interaction domain that corresponds to a constant spacing between the converted waves at the top and at the base of the LVL. This non-interaction domain corresponds to dominant signal period smaller than 1 s for the primary converted waves and 3 s for the backscattered. As the Vp/Vs is generally estimated based on the interpretation of both primary and backscattered waves, the period of 1 s is required for a reliable interpretation. The multiscale approach is applied to a real data example of teleseismic events recorded at a 3-component seismometer in order to reliably constrain the Vp/Vs ratio and the thickness of the oceanic crust at the top of the Hellenic subduction.</p>


Geophysics ◽  
2009 ◽  
Vol 74 (6) ◽  
pp. WCA57-WCA63 ◽  
Author(s):  
Mathias Alerini ◽  
Bärbel Traub ◽  
Céline Ravaut ◽  
Eric Duveneck

Ocean-bottom node acquisitions provide high-quality data but usually have large distances between the nodes because of cost. This makes the use of conventional processing difficult and has led to relatively little interest in such data for industrial purposes. We have considered a three-step workflow specifically designed for prestack depth imaging of P-waves recorded by ocean-bottom nodes. It consists of multiple attenuation, velocity model estimation, and prestack depth migration. Whereas multiple attenuation and tomography use data in the common-receiver domain, migration is performed in the common-angle domain. One of the main features is the handling of the sparse receiver geometry during velocity model estimation: the reciprocity of the PP-Green’s functions is used to obtain the required tomographic input using only the common-receiver gathers. The tomographic method also provides an estimate of the geologic dip, which is used to limit the migration operator. This provides migrated images free of migration smiles. The workflow contains no additional assumptions compared to those used to process ocean-bottom cable data. We validate the workflow on a 2D line extracted from a 3D real data set acquired in the North Sea. The results show that it is possible to use ocean-bottom data efficiently for prestack depth imaging.


1994 ◽  
Author(s):  
Pascal Desegaulx ◽  
Jean‐Luc Piazza ◽  
J. P. Estève ◽  
Jean‐Paul Jeannot
Keyword(s):  

2019 ◽  
Vol 35 (1) ◽  
pp. 126-136 ◽  
Author(s):  
Tour Liu ◽  
Tian Lan ◽  
Tao Xin

Abstract. Random response is a very common aberrant response behavior in personality tests and may negatively affect the reliability, validity, or other analytical aspects of psychological assessment. Typically, researchers use a single person-fit index to identify random responses. This study recommends a three-step person-fit analysis procedure. Unlike the typical single person-fit methods, the three-step procedure identifies both global misfit and local misfit individuals using different person-fit indices. This procedure was able to identify more local misfit individuals than single-index method, and a graphical method was used to visualize those particular items in which random response behaviors appear. This method may be useful to researchers in that it will provide them with more information about response behaviors, allowing better evaluation of scale administration and development of more plausible explanations. Real data were used in this study instead of simulation data. In order to create real random responses, an experimental test administration was designed. Four different random response samples were produced using this experimental system.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (10) ◽  
pp. 607-618
Author(s):  
JÉSSICA MOREIRA ◽  
BRUNO LACERDA DE OLIVEIRA CAMPOS ◽  
ESLY FERREIRA DA COSTA JUNIOR ◽  
ANDRÉA OLIVEIRA SOUZA DA COSTA

The multiple effect evaporator (MEE) is an energy intensive step in the kraft pulping process. The exergetic analysis can be useful for locating irreversibilities in the process and pointing out which equipment is less efficient, and it could also be the object of optimization studies. In the present work, each evaporator of a real kraft system has been individually described using mass balance and thermodynamics principles (the first and the second laws). Real data from a kraft MEE were collected from a Brazilian plant and were used for the estimation of heat transfer coefficients in a nonlinear optimization problem, as well as for the validation of the model. An exergetic analysis was made for each effect individually, which resulted in effects 1A and 1B being the least efficient, and therefore having the greatest potential for improvement. A sensibility analysis was also performed, showing that steam temperature and liquor input flow rate are sensible parameters.


Sign in / Sign up

Export Citation Format

Share Document