Recurrence Analysis of Pressure Signals for Identification of Intermittent Flow Sub-Regimes

Author(s):  
Sunny Saini ◽  
Jyotirmay Banerjee
2021 ◽  
Author(s):  
Maria Isabel Arce ◽  
Mia M. Bengtsson ◽  
Daniel von Schiller ◽  
Dominik Zak ◽  
Jana Täumer ◽  
...  

AbstractDroughts are recognized to impact global biogeochemical cycles. However, the implication of desiccation on in-stream carbon (C) cycling is not well understood yet. We subjected sediments from a lowland, organic rich intermittent stream to experimental desiccation over a 9-week-period to investigate temporal changes in microbial functional traits in relation to their redox requirements, carbon dioxide (CO2) and methane (CH4) fluxes and water-soluble organic carbon (WSOC). Concurrently, the implications of rewetting by simulated short rainfalls (4 and 21 mm) on gaseous C fluxes were tested. Early desiccation triggered dynamic fluxes of CO2 and CH4 with peak values of 383 and 30 mg C m−2 h−1 (mean ± SD), respectively, likely in response to enhanced aerobic mineralization and accelerated evasion. At longer desiccation, CH4 dropped abruptly, likely because of reduced abundance of anaerobic microbial traits. The CO2 fluxes ceased later, suggesting aerobic activity was constrained only by extended desiccation over time. We found that rainfall boosted fluxes of CO2, which were modulated by rainfall size and the preceding desiccation time. Desiccation also reduced the amount of WSOC and the proportion of labile compounds leaching from sediment. It remains questionable to which extent changes of the sediment C pool are influenced by respiration processes, microbial C uptake and cell lysis due to drying-rewetting cycles. We highlight that the severity of the dry period, which is controlled by its duration and the presence of precipitation events, needs detailed consideration to estimate the impact of intermittent flow on global riverine C fluxes.


Author(s):  
Claudia Ivette Ledesma-Ramirez ◽  
Erik Bojorges-Valdez ◽  
Oscar Yanez-Suarez ◽  
Omar Pina-Ramirez
Keyword(s):  

2017 ◽  
Vol 52 (6) ◽  
pp. 248-262 ◽  
Author(s):  
Zachary Kincaid ◽  
Jason Breck ◽  
Ashkan Forouhi Boroujeni ◽  
Thomas Reps
Keyword(s):  

2006 ◽  
Vol 63 (5) ◽  
pp. 1451-1466 ◽  
Author(s):  
Holger Siebert ◽  
Katrin Lehmann ◽  
Manfred Wendisch

Abstract Tethered balloon–borne measurements with a resolution in the order of 10 cm in a cloudy boundary layer are presented. Two examples sampled under different conditions concerning the clouds' stage of life are discussed. The hypothesis tested here is that basic ideas of classical turbulence theory in boundary layer clouds are valid even to the decimeter scale. Power spectral densities S( f ) of air temperature, liquid water content, and wind velocity components show an inertial subrange behavior down to ≈20 cm. The mean energy dissipation rates are ∼10−3 m2 s−3 for both datasets. Estimated Taylor Reynolds numbers (Reλ) are ∼104, which indicates the turbulence is fully developed. The ratios between longitudinal and transversal S( f ) converge to a value close to 4/3, which is predicted by classical turbulence theory for local isotropic conditions. Probability density functions (PDFs) of wind velocity increments Δu are derived. The PDFs show significant deviations from a Gaussian distribution with longer tails typical for an intermittent flow. Local energy dissipation rates ɛτ are derived from subsequences with a duration of τ = 1 s. With a mean horizontal wind velocity of 8 m s−1, τ corresponds to a spatial scale of 8 m. The PDFs of ɛτ can be well approximated with a lognormal distribution that agrees with classical theory. Maximum values of ɛτ ≈ 10−1 m2 s−3 are found in the analyzed clouds. The consequences of this wide range of ɛτ values for particle–turbulence interaction are discussed.


Sign in / Sign up

Export Citation Format

Share Document