Determining water-oil relative permeability and capillary pressure from steady-state tests

Author(s):  
S. Borazjani ◽  
N. Hemmati ◽  
A. Behr ◽  
L. Genolet ◽  
H. Mahani ◽  
...  
Author(s):  
Pål Ø. Andersen

Steady state relative permeability experiments are performed by co-injection of two fluids through core plug samples. Effective relative permeabilities can be calculated from the stabilized pressure drop using Darcy’s law and linked to the corresponding average saturation of the core. These estimated relative permeability points will be accurate only if capillary end effects and transient effects are negligible. This work presents general analytical solutions for calculation of spatial saturation and pressure gradient profiles, average saturation, pressure drop and relative permeabilities for a core at steady state when capillary end effects are significant. We derive an intuitive and general “intercept” method for correcting steady state relative permeability measurements for capillary end effects: plotting average saturation and inverse effective relative permeability (of each phase) against inverse total rate will give linear trends at high total rates and result in corrected relative permeability points when extrapolated to zero inverse total rate (infinite rate). We derive a formal proof and generalization of the method proposed by Gupta and Maloney (2016) [SPE Reserv. Eval. Eng. 19, 02, 316–330], also extending the information obtained from the analysis, especially allowing to calculate capillary pressure. It is shown how the slopes of the lines are related to the saturation functions allowing to scale all test data for all conditions to the same straight lines. Two dimensionless numbers are obtained that directly express how much the average saturation is changed and the effective relative permeabilities are reduced compared to values unaffected by end effects. The numbers thus quantitatively and intuitively express the influence of end effects. A third dimensionless number is derived providing a universal criterion for when the intercept method is valid, directly stating that the end effect profile has reached the inlet. All the dimensionless numbers contain a part depending only on saturation functions, injected flow fraction and viscosity ratio and a second part containing constant known fluid, rock and system parameters such as core length, porosity, interfacial tension, total rate, etc. The former parameters determine the saturation range and shape of the saturation profile, while the latter number determines how much the profile is compressed towards the outlet. End effects cause the saturation profile and average saturation to shift towards the saturation where capillary pressure is zero and the effective relative permeabilities to be reduced compared to the true relative permeabilities. This shift is greater at low total rate and gives a false impression of rate-dependent relative permeabilities. The method is demonstrated with multiple examples. Methodologies for deriving relative permeability and capillary pressure systematically and consistently, even based on combining data from tests with different fluid and core properties, are presented and demonstrated on two datasets from the literature. The findings of this work are relevant to accurately estimate relative permeabilities in steady state experiments, relative permeability end points and critical saturations during flooding or the impact of injection chemicals on mobilizing residual phase.


SPE Journal ◽  
2010 ◽  
Vol 15 (04) ◽  
pp. 917-927 ◽  
Author(s):  
Thomas Ramstad ◽  
Pål-Eric Øren ◽  
Stig Bakke

Summary We present results from simulations of two-phase flow directly on digitized rock-microstructure images of porous media using a lattice Boltzmann (LB) method. The implemented method is performed on a D3Q19 lattice with fluid/fluid and fluid/solid interaction rules to handle interfacial tension and wetting properties. We demonstrate that the model accurately reproduces capillary and wetting effects in pores with a noncircular shape. The model is applied to study viscous coupling effects for two-phase concurrent annular flow in circular tubes. Simulated relative permeabilities for this case agree with analytical predictions and show that the nonwetting-phase relative permeability might greatly exceed unity when the wetting phase is less viscous than the nonwetting phase. Two-phase LB simulations are performed on microstructure images derived from X-ray microtomography and process-based reconstructions of Bentheimer sandstone. By imposing a flow regulator to control the capillary number of the flow, the LB model can closely mimic typical experimental setups, such as centrifuge capillary pressure and unsteady- and steady-state relative permeability measurements. Computed drainage capillary pressure curves are found to be in excellent agreement with experimental data. Simulated steady-state relative permeabilities at typical capillary numbers in the vicinity of 10−5 are in fair agreement with measured data. The simulations accurately reproduce the wetting-phase relative permeability but tend to underpredict the nonwetting-phase relative permeability at high wetting-phase saturations. We explain this by pointing to percolation threshold effects of the samples. For higher capillary numbers, we correctly observe increased relative permeability for the nonwetting phase caused by mobilization and flow of trapped fluid. It is concluded that the LB model is a powerful and promising tool for deriving physically meaningful constitutive relations directly from rock-microstructure images.


2015 ◽  
Vol 19 (02) ◽  
pp. 316-330 ◽  
Author(s):  
Robin Gupta ◽  
Daniel R. Maloney

Summary In laboratory measurements of relative permeability, capillary discontinuities at sample ends give rise to capillary end effects (CEEs). End effects affect fluid flow and retention. If end-effect artifacts are not minimized by test design and data interpretation, relative permeability results may be significantly erroneous. This is a well-known issue in unsteady-state tests, but even steady-state relative permeability results are influenced by end-effect artifacts. This work describes the intercept method, a novel modified steady-state approach in which corrections for end-effect artifacts are applied as data are measured. The intercept method requires running a steady-state relative permeability test with several different flow rates for each fractional flow. Obtaining multiple (three or four) sets of rates (Q), pressure drops (ΔP), and saturation data allows for assessment of CEE artifacts. With Darcy flow, a plot of pressure drop vs. total flow rate is typically linear. A nonzero intercept or offset is an end-effect artifact. To correct for the effect, the offset is subtracted from measured pressure drops. Corrected pressure drops are used in permeability calculations. The set of saturations from measurements at the target fractional flow is used to calculate a corrected final saturation. Because corrections for end effects are made during the test rather than after the test is complete, any discrepancies can be resolved by additional measurements before moving on to the next fractional flow. Rates are then adjusted to yield the next target fractional-flow condition, and the same protocol is repeated for each subsequent steady-state measurement. The method is validated by theory and is easy to apply.


Sign in / Sign up

Export Citation Format

Share Document