A molecular insight into the effect of key ions on the detachment of crude oil from calcite surface: Implication for low salinity water flooding in carbonate reservoirs

2022 ◽  
Vol 208 ◽  
pp. 109562
Author(s):  
Songqi Li ◽  
Yuetian Liu ◽  
Liang Xue ◽  
Li Yang ◽  
Zhiwang Yuan
2014 ◽  
Author(s):  
Ingebret Fjelde ◽  
Aruoture Voke Omekeh ◽  
Yen Adams Sokama-Neuyam

Fuel ◽  
2019 ◽  
Vol 235 ◽  
pp. 822-831 ◽  
Author(s):  
Miku Takeya ◽  
Mai Shimokawara ◽  
Yogarajah Elakneswaran ◽  
Toyoharu Nawa ◽  
Satoru Takahashi

2021 ◽  
Author(s):  
Navpreet Singh ◽  
Hemanta Kumar Sarma

Abstract Low salinity waterflooding has been an area of great interest for researchers for almost over three decades for its perceived "simplicity," cost-effectiveness, and the potential benefits it offers over the other enhanced oil recovery (EOR) techniques. There have been numerous laboratory studies to study the effect of injection water salinity on oil recovery, but there are only a few cases reported worldwide where low salinity water flooding (LSW) has been implemented on a field scale. In this paper, we have summarized the results of our analyses for some of those successful field cases for both sandstone and carbonate reservoirs. Most field cases of LSW worldwide are in sandstone reservoirs. Although there have been a lot of experimental studies on the effect of water salinity on recovery in carbonate reservoirs, only a few cases of field-scale implementation have been reported for the LSW in carbonate reservoirs. The incremental improvement expected from the LSW depends on various factors like the brine composition (injection and formation water), oil composition, pressure, temperature, and rock mineralogy. Therefore, all these factors should be considered, together with some specially designed fit-for-purpose experimental studies need to be performed before implementing the LSW on a field scale. The evidence of the positive effect of LSW at the field scale has mostly been observed from near well-bore well tests and inter-well tests. However, there are a few cases such Powder River Basin in the USA and Bastrykskoye field in Russia, where the operators had unintentionally injected less saline water in the past and were pleasantly surprised when the analyses of the historical data seemed to attribute the enhanced oil recovery due to the lower salinity of the injected water. We have critically analyzed all the major field cases of LSW. Our paper highlights some of the key factors that worked well in the field, which showed a positive impact of LSW and a comparative assessment of the incremental recovery realized from the reservoir visa-a-vis the expectations generated from the laboratory-based experimental studies. It is envisaged that such a comparison could be more meaningful and reliable. Also, it identifies the likely uncertainties (and their sources) associated during the field implementation of LSW.


Fuel ◽  
2018 ◽  
Vol 215 ◽  
pp. 171-177 ◽  
Author(s):  
Yongqiang Chen ◽  
Quan Xie ◽  
Ahmad Sari ◽  
Patrick V. Brady ◽  
Ali Saeedi

2021 ◽  
Author(s):  
Christophe Darnault ◽  
Bruce Phibbs ◽  
Casey McCarroll ◽  
Brightin Blanton

<p>Advances in the field of nanoscience and nanotechnology have resulted in the development of engineered nanoparticles, with unique physico-chemical properties, and their applications to all the sectors of industry, including the petroleum industry. This presentation will discuss several advances and applications of silica-based nanofluids in chemical enhanced oil recovery (EOR) processes related to interfacial phenomena in multiphase systems and physics of multiphase flow in porous media, and in particular the oil recovery characteristics resulting from nanofluids based low-salinity water flooding and chemical EOR processes. Laboratory experiments were carried out using homogeneous sandpack columns simulating oil-wet and water-wet reservoirs. To simulate oil-wet reservoirs, the sandpack columns were saturated with a light crude oil (West Texas Intermediate) at first. While in the case of the simulated water-wet reservoirs, these reservoirs were made by saturating the sandpack columns initially with a 1.0 wt% brine (NaCl) and then followed by an injection of the light crude oil. The subsequent oil-saturated (oil-wet system) and oil-brine mixture (water-wet system) within the sandpack columns were then subject to water flooding (non-sequenced recovery) or EOR processes (sequenced recovery) utilizing brine and/or surfactant as controls as well as low (0.01 wt%) and high (0.1 wt%) silica-based nanofluids. When compared with the high concentration of silica-based nanofluid, the low silica-based nanofluid concentration produced low fractional and cumulative oil recovery results in the water flooding process of oil recovery for both oil-wet and water-wet reservoir systems; however, the low silica-based nanofluid concentration was found to be the most effective with EOR process for both oil-wet and water-wet reservoir systems. Our findings permit to choose optimal concentrations of silica nanoparticles to be employed for either water flooding or EOR processes in order to increase the oil extraction efficiency.</p>


Sign in / Sign up

Export Citation Format

Share Document