Gradual or Instantaneous Wettability Alteration During Simulation of Low-Salinity Water Flooding in Carbonate Reservoirs

Author(s):  
Zahra Negahdari ◽  
Mohammad R. Malayeri ◽  
Mojtaba Ghaedi ◽  
Sabber Khandoozi ◽  
Masoud Riazi
RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42570-42583
Author(s):  
Rohit Kumar Saw ◽  
Ajay Mandal

The combined effects of dilution and ion tuning of seawater for enhanced oil recovery from carbonate reservoirs. Dominating mechanisms are calcite dissolution and the interplay of potential determining ions that lead to wettability alteration of rock surface.


Fuel ◽  
2020 ◽  
Vol 271 ◽  
pp. 117675 ◽  
Author(s):  
Yongqiang Chen ◽  
Nilesh Kumar Jha ◽  
Duraid Al-Bayati ◽  
Maxim Lebedev ◽  
Mohammad Sarmadivaleh ◽  
...  

2013 ◽  
Author(s):  
Emad W. Al Shalabi ◽  
Kamy Sepehrnoori ◽  
Mojdeh Delshad

Author(s):  
Dhrubajyoti Neog

AbstractLow salinity water flooding (LSWF) is a promising strategy for improving oil recovery in sandstone reservoirs, and recent studies have shown that the recovery with low salinity water injection is a function of not only the salinity and ionic composition but also of the pH of injected brine, temperature, and the combined effect of both on the wetting properties of the clay mineral surfaces. Following brine flooding, the initial wettability of sandstone rock surfaces existed when crude oil, formation water (FW), and rock surface interaction were in chemical equilibrium at reservoir condition changes based on brine pH, salinity, temperature, and clay mineralogy. This study proposes pH, core flood temperature, and irreducible water saturation as key parameters in inducing wettability changes in the sandstone porous media. In the present work, the sandstone cores were subjected to flooding at temperatures of 70 °C, 85 °C, and 105 °C and measured the pH of the discharge effluents and initial or irreducible water saturation with respect to varying temperatures. This paper investigates the rise of the pH gradient and irreducible water saturation, Swir with respect to LS flooding, at increasing temperatures using a Barail sandstone core. The key results include the following: The pH of the flood effluents increases with increasing core flood temperature, which indicates a shifting of the existing wetting state of the rock. The combined effects of increasing pH and initial or irreducible water saturation pertaining to low salinity flooding at progressively increasing temperatures result in increasing water wettability of the sandstone rock. Increasing flooding temperatures cause an increase in Swir, which follows a linear relationship. The findings of the paper highlight the link of increasing pH and irreducible water saturation with the water wetting properties of the sandstone reservoir rock and hence the fluid flow or the oil–water relative permeability behaviour. This paper proposes that increased irreducible water saturation and pH of water flood effluents are connected to increasing water wetness in a sandstone rock as a function of elevated temperatures. As adequate work and consensus on the potential effects of temperature on wettability alteration under low salinity water flooding is still lacking, the current work in relation to the Barail sandstone of the upper Assam basin could be a novel reference for understanding of the importance of temperature dependent wettability alteration behaviour in sandstone cores. The findings of this study can assist in the formation of a novel approach towards considering the increasing irreducible water saturation and pH of the brine effluent as an effect of alternatively injection of low salinity water at elevated temperatures on sandstone porous rock.


2018 ◽  
Vol 24 (8) ◽  
pp. 40
Author(s):  
Hussain Ali Baker ◽  
Kareem A. Alwan ◽  
Saher Faris Fadhil

Smart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure. In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water. The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity water flooding. The result of this experimental work shows that the water without any free ions (deionized water) and modified low salinity water have improved better oil recovery than the formation water and seawater as a secondary oil process. The increase in oil recovery factor related to the wettability alteration during low salinity water flooding which causes a decrease in the interfacial tension between the crude oil in porous media and the surface of reservoir rocks. As well as the dissolution of minerals such as calcite Ca+2 was observed in this work, which causes an increase in the pH value. All these factors led to change the wettability of rock to be more water-wet, so the oil recovery can be increased.  


2021 ◽  
Author(s):  
Navpreet Singh ◽  
Hemanta Kumar Sarma

Abstract Low salinity waterflooding has been an area of great interest for researchers for almost over three decades for its perceived "simplicity," cost-effectiveness, and the potential benefits it offers over the other enhanced oil recovery (EOR) techniques. There have been numerous laboratory studies to study the effect of injection water salinity on oil recovery, but there are only a few cases reported worldwide where low salinity water flooding (LSW) has been implemented on a field scale. In this paper, we have summarized the results of our analyses for some of those successful field cases for both sandstone and carbonate reservoirs. Most field cases of LSW worldwide are in sandstone reservoirs. Although there have been a lot of experimental studies on the effect of water salinity on recovery in carbonate reservoirs, only a few cases of field-scale implementation have been reported for the LSW in carbonate reservoirs. The incremental improvement expected from the LSW depends on various factors like the brine composition (injection and formation water), oil composition, pressure, temperature, and rock mineralogy. Therefore, all these factors should be considered, together with some specially designed fit-for-purpose experimental studies need to be performed before implementing the LSW on a field scale. The evidence of the positive effect of LSW at the field scale has mostly been observed from near well-bore well tests and inter-well tests. However, there are a few cases such Powder River Basin in the USA and Bastrykskoye field in Russia, where the operators had unintentionally injected less saline water in the past and were pleasantly surprised when the analyses of the historical data seemed to attribute the enhanced oil recovery due to the lower salinity of the injected water. We have critically analyzed all the major field cases of LSW. Our paper highlights some of the key factors that worked well in the field, which showed a positive impact of LSW and a comparative assessment of the incremental recovery realized from the reservoir visa-a-vis the expectations generated from the laboratory-based experimental studies. It is envisaged that such a comparison could be more meaningful and reliable. Also, it identifies the likely uncertainties (and their sources) associated during the field implementation of LSW.


Fuel ◽  
2018 ◽  
Vol 215 ◽  
pp. 171-177 ◽  
Author(s):  
Yongqiang Chen ◽  
Quan Xie ◽  
Ahmad Sari ◽  
Patrick V. Brady ◽  
Ali Saeedi

Sign in / Sign up

Export Citation Format

Share Document