Low salinity water flooding in high acidic oil reservoirs: Impact of pH on wettability of carbonate reservoirs

2019 ◽  
Vol 281 ◽  
pp. 444-450 ◽  
Author(s):  
Ahmad Sari ◽  
Yongqiang Chen ◽  
Quan Xie ◽  
Ali Saeedi
2021 ◽  
Author(s):  
Navpreet Singh ◽  
Hemanta Kumar Sarma

Abstract Low salinity waterflooding has been an area of great interest for researchers for almost over three decades for its perceived "simplicity," cost-effectiveness, and the potential benefits it offers over the other enhanced oil recovery (EOR) techniques. There have been numerous laboratory studies to study the effect of injection water salinity on oil recovery, but there are only a few cases reported worldwide where low salinity water flooding (LSW) has been implemented on a field scale. In this paper, we have summarized the results of our analyses for some of those successful field cases for both sandstone and carbonate reservoirs. Most field cases of LSW worldwide are in sandstone reservoirs. Although there have been a lot of experimental studies on the effect of water salinity on recovery in carbonate reservoirs, only a few cases of field-scale implementation have been reported for the LSW in carbonate reservoirs. The incremental improvement expected from the LSW depends on various factors like the brine composition (injection and formation water), oil composition, pressure, temperature, and rock mineralogy. Therefore, all these factors should be considered, together with some specially designed fit-for-purpose experimental studies need to be performed before implementing the LSW on a field scale. The evidence of the positive effect of LSW at the field scale has mostly been observed from near well-bore well tests and inter-well tests. However, there are a few cases such Powder River Basin in the USA and Bastrykskoye field in Russia, where the operators had unintentionally injected less saline water in the past and were pleasantly surprised when the analyses of the historical data seemed to attribute the enhanced oil recovery due to the lower salinity of the injected water. We have critically analyzed all the major field cases of LSW. Our paper highlights some of the key factors that worked well in the field, which showed a positive impact of LSW and a comparative assessment of the incremental recovery realized from the reservoir visa-a-vis the expectations generated from the laboratory-based experimental studies. It is envisaged that such a comparison could be more meaningful and reliable. Also, it identifies the likely uncertainties (and their sources) associated during the field implementation of LSW.


Fuel ◽  
2018 ◽  
Vol 215 ◽  
pp. 171-177 ◽  
Author(s):  
Yongqiang Chen ◽  
Quan Xie ◽  
Ahmad Sari ◽  
Patrick V. Brady ◽  
Ali Saeedi

2021 ◽  
pp. 1-13
Author(s):  
Hossein Khalili ◽  
Jalal Fahimpour ◽  
Mohammad Sharifi ◽  
Zoha Dalal Isfehani

Abstract Injecting low-salinity water has proved to be an efficient displacement process in oil reservoirs, owing to its ability to modify the properties at the fluid-rock and fluid-fluid interfaces in favor of mobilizing more oil. In this regard, reduction of interfacial tension (IFT) between oil and water is one of the key controlling parameters. It is suspected that the asphaltene constituents of the oil and type of water ions are responsible for such a reduction in IFT. In this study, systematic experimental investigations were carried out to scrutinize the influence of brine salinity, asphaltene concentration and temperature on IFT. Single and multi-component brines, which in particular compose of NaCl, CaCl2, and MgCl2 salts, and two synthetic oils with 1 and 10 wt% asphaltene content were used at temperatures ranging from 25 to 80°C. The results showed that the presence of salt in the solution can alter the distribution of polar components at the oil-brine interface due to the electrostatic effects, which in turn would change IFT of the system. IFT also decreased when temperature increased from 25 to 80°C, however the level of changes was strongly depended on the brine type, salinity level and asphaltene content. The results also demonstrated that the crude oil with the higher asphaltene concentration experiences higher IFT reduction when is contacted with the low-salinity water. The new findings from this study will improve the understanding of the underlying mechanisms for low salinity water flooding in oil reservoirs.


Author(s):  
Rasoul Mokhtari ◽  
Benaiah U. Anabaraonye ◽  
Armin Afrough ◽  
Samira Mohammadkhani ◽  
Karen L. Feilberg

Sign in / Sign up

Export Citation Format

Share Document