Immunological activation of human umbilical cord blood mast cells induces tryptase secretion and interleukin-6, and histidine decarboxilase mRNA gene expression

2007 ◽  
Vol 55 (1) ◽  
pp. 57-63 ◽  
Author(s):  
M.L. Castellani ◽  
A. Perrella ◽  
D.J. Kempuraj ◽  
W. Boucher ◽  
M. Tagen ◽  
...  
Blood ◽  
1997 ◽  
Vol 90 (5) ◽  
pp. 1807-1820 ◽  
Author(s):  
See-Ying Tam ◽  
Mindy Tsai ◽  
Masao Yamaguchi ◽  
Koji Yano ◽  
Joseph H. Butterfield ◽  
...  

Abstract Nerve growth factor (NGF ) can influence mast cell development and function in murine rodents by interacting with its receptors on mast cells. We now report the identification of mRNA transcripts of full-length tyrosine kinase-containing trkA, trkB, and trkC neurotrophin receptor genes in HMC-1 human mast cell leukemia cells. Although HMC-1 cells lacked p75 mRNA, they expressed transcripts for the exon-lacking splice variant of trkA (trkAI), truncated trkB (trkB.T1), and truncated trkC. By flow cytometry, HMC-1 cells exhibited expression of TrkA, TrkB, and TrkC receptor proteins containing full-length tyrosine kinase domains. NGF stimulation of HMC-1 cells induced tyrosine phosphorylation of TrkA protein, increased expression of the early response genes c-fos and NGF1-A, and activation of ERK-mitogen–activated protein (MAP) kinase, results which indicate that TrkA receptors in HMC-1 cells are fully functional. Highly purified populations of human lung mast cells expressed mRNAs for trkA, trkB and trkC, whereas preparations of human umbilical cord blood-derived mast cells expressed mRNAs for trkA and trkC, but not trkB. Moreover, preparations of human umbilical cord blood-derived immature mast cells not only expressed mRNA transcript and protein for TrkA, but exhibited significantly higher numbers of chymase-positive cells after the addition of NGF to their culture medium for 3 weeks. In addition, HMC-1 cells expressed mRNAs for NGF, brain-derived neurotrophic factor (BDNF ), and neurotrophin-3 (NT-3), the cognate ligands for TrkA, TrkB, and TrkC, whereas NGF and BDNF transcripts were detectable in human umbilical cord blood mast cell preparations. Taken together, our findings show that human mast cells express a functional TrkA receptor tyrosine kinase and indicate that NGF may be able to promote certain aspects of mast cell development and/or maturation in humans. Our studies also raise the possibility that human mast cells may represent a potential source for neurotrophins.


2021 ◽  
Author(s):  
Namhee Jung ◽  
TaeHo Kong ◽  
Yeonsil Yu ◽  
Hwanhee Park ◽  
Eunjoo Lee ◽  
...  

Abstract Human mesenchymal stem cells (MSCs) are emerging as a treatment for atopic dermatitis (AD), which is a common inflammatory skin disorder that affects a large number of people across the world. Treatment of AD using human umbilical cord blood-derived MSCs (hUCB-MSCs) has recently been studied; however, the mechanism underlying the effects of these cells is unclear. This study investigated the effect of epidermal growth factor (EGF) secreted by hUCB-MSCs on AD. hUCB-MSCs secreted a high concentration of EGF compared with other cell types. To elucidate the effect of EGF secreted by hUCB-MSCs, EGF expression was downregulated in hUCB-MSCs using EGF-targeting small interfering RNA, and these cells were co-cultured with keratinocytes, Th2 cells, and mast cells. Depletion of EGF expression disrupted the immunomodulatory effects of hUCB-MSCs on these AD-related inflammatory cells. In a Dermatophagoides farinae-induced AD mouse model, subcutaneous injection of hUCB-MSCs ameliorated gross scoring, histopathologic damage, and mast cell infiltration, and significantly reduced the levels of inflammatory cytokines including interleukin (IL)-4, tumor necrosis factor-α (TNFa), thymus and activation-regulated chemokine (TARC), and IL-22, as well as the serum IgE level. These therapeutic effects were significantly attenuated at all evaluation points in mice injected with EGF-depleted hUCB-MSCs. Taken together, these results suggest that EGF secreted by hUCB-MSCs plays an important role in treatment of AD by regulating the inflammatory response in keratinocytes, Th2 cells, and mast cells.


BioTechniques ◽  
2003 ◽  
Vol 34 (5) ◽  
pp. 910-914 ◽  
Author(s):  
S. Greenfeder ◽  
H. Gilchrest ◽  
B. Cheewatrakoolpong ◽  
S. Eckel ◽  
M. Billah ◽  
...  

2000 ◽  
Vol 49 (S1) ◽  
pp. 11-12 ◽  
Author(s):  
H. Y. A. Lau ◽  
T. Obata ◽  
T. Nagakura ◽  
S. M. Chow

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Han-Sung Hwang ◽  
Yong-Sun Maeng

Preeclampsia is a syndrome characterized by deterioration of either the maternal condition or the fetal condition. The adverse intrauterine environment made by preeclampsia results into intrauterine growth restriction and increased risk of a variety of diseases in future life. Given the adverse environment of fetal circulation made in the preeclamptic condition, and the role of mesenchymal stem cell (MSC) as a multipotent progenitor cell, we hypothesized that MSCs derived from human umbilical cord blood (hUCB-MSCs) obtained from preeclampsia are adversely altered or affected compared with normal pregnancy. The aim of this study was to analyze the biological characteristics and compare the functional abilities and gene expression patterns of hUCB-MSCs originating from pregnant women with and without severe preeclampsia. hUCB-MSCs were isolated and cultured from 28 pregnant women with severe preeclampsia and 30 normal pregnant women. hUCB-MSCs obtained from women with preeclampsia were less proliferative and more senescent and had lower telomerase activity and higher ROS activity than cells from women with normal pregnancy. In addition, many senescence-related differentially expressed genes (DEGs) were identified by analysis of microarray gene expression profiles and significantly associated with the Gene Ontology term cell aging. In conclusion, hUCB-MSCs obtained from women with preeclampsia showed the poorly proliferative, more senescent, and decreased telomerase activity, and these characters may be related with functional impairment of MSC from preeclampsia compared with cells from normal pregnancy.


Sign in / Sign up

Export Citation Format

Share Document