β-Catenin pathway is required for TGF-β1 inhibition of PPARγ expression in cultured hepatic stellate cells

2012 ◽  
Vol 66 (3) ◽  
pp. 219-225 ◽  
Author(s):  
Jingjing Qian ◽  
Minghui Niu ◽  
Xuguang Zhai ◽  
Qian Zhou ◽  
Yajun Zhou
2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Hui Yang ◽  
Li Zhang ◽  
Jie Chen ◽  
Xiaoqian Zhang ◽  
Zhongfu Zhao ◽  
...  

Background. Hepatic stellate cells (HSCs) are reported to play significant roles in the development of liver fibrosis. Heme oxygenase-1 (HO-1) is a key rate-limiting enzyme, which could decrease collagen synthesis and liver damage. Nevertheless, it was yet elusive towards the function and mechanism of HO-1. Methods. An HO-1 inducer Hemin or an HO-1 inhibitor ZnPP-IX was used to treat the activated HSC-T6, respectively. MTT assay was adopted to detect cell proliferation. Immunocytochemical staining was employed to test the levels of alpha-smooth muscle actin (α-SMA), peroxisome proliferator-activated receptor-γ (PPARγ), and nuclear factor-kappa B (NF-kappa B) levels in HSC-T6. HO-1, PPARγ, and NF-κB expression levels were measured by qRT-PCR and Western blotting. ELISA was then used to detect the levels of transforming growth factor- (TGF-) beta 1 (TGF-β1), interleukin-6 (IL-6), serum hyaluronic acid (HA), and serum type III procollagen aminopeptide (PIIIP). Results. HSC-T6 proliferation was inhibited in Hemin-treated HSCs. The levels of α-SMA, HA, and PIIIP and the production of ECM were lower in Hemin-treated HSCs, whereas those could be rescued by ZnPP-IX. NF-κB activation was decreased, but PPARγ expression was increased after HO-1 upregulation. Furthermore, the levels of TGF-β1 and IL-6, which were downstream of activated NF-κB in HSC-T6, were reduced. The PPAR-specific inhibitor GW9662 could block those mentioned effects. Conclusions. Our data demonstrated that HO-1 induction could inhibit HSC proliferation and activation by regulating PPARγ expression and NF-κB activation directly or indirectly, which makes it a promising therapeutic target for liver fibrosis.


2017 ◽  
Vol 95 ◽  
pp. 11-17 ◽  
Author(s):  
Zuliang Hu ◽  
Pengtao You ◽  
Sha Xiong ◽  
Jianrong Gao ◽  
Yinping Tang ◽  
...  

Author(s):  
Zhenguo Liu ◽  
Juan Wang ◽  
Wu Xing ◽  
Yingqiong Peng ◽  
Yan Huang ◽  
...  

2018 ◽  
Vol 27 (2) ◽  
pp. 115-121
Author(s):  
Mona A. Abu El Makarem ◽  
Ghada M. El-Sagheer ◽  
Moustafa A. Abu El-Ella

Objective: To investigate the possible role of signal transducer and activator of transcription 5 (STAT5) in the pathogenesis of liver fibrosis in Egyptian patients with chronic hepatitis C (CHC) virus infection and its relation to hepatic stellate cells (HSC). Subjects and Methods: Sixty-five patients (46 males and 19 females) were divided into 4 groups based on the severity of fibrosis as detected by Fibroscan as follows: F1, n = 15; F2, n = 21; F3, n = 13; and F4, n = 16. Twenty age- and gender-matched healthy persons volunteered as controls. The serum levels of STAT5, TGF-β1, α-smooth muscle actin (α-SMA), fasting blood sugar, and fasting insulin, as well as homeostasis model assessment of insulin resistance (HOMA-IR), were determined and compared for all groups. The usefulness of the studied serum biomarkers for predicting liver fibrosis was evaluated using a receiver operating characteristic curve. Results: Serum levels of STAT5 were significantly lower in patients compared to controls (9.69 ± 5.62 vs. 14.73 ± 6.52, p ≤ 0.001); on the contrary, TGF-β1, α-SMA, and HOMA-IR were significantly higher in patients compared to controls (mean: 1,796.04 vs. 1,636.94; 14.94 vs. 8.1; and 7.91 vs. 4.18; p ≤ 0.01 and 0.001, respectively). TGF-β1 and α-SMA showed a progressive increase with advancing severity of hepatic fibrosis (mean TGF-β1: 2,058.4 in F1-F2 and 1,583.8 in F3-F4, p ≤ 0.04; mean α-SMA: 13.59 in F1-F2 and 16.62 in F3-F4, p ≤ 0.05). STAT5 had a significant negative correlation with TGF-β1 (p ≤ 0.001), while no correlation was detected with α-SMA (p ≤ 0.8). Conclusions: STAT5 may play a significant role in hepatic fibrogenesis through the induction of TGF-β1 but not through the activation of hepatic stellate cells.


2015 ◽  
Vol 195 (6) ◽  
pp. 2648-2656 ◽  
Author(s):  
Yan Li ◽  
Byung-Gyu Kim ◽  
Shiguang Qian ◽  
John J. Letterio ◽  
John J. Fung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document