scholarly journals Wavelet entropy and fractional Brownian motion time series

2006 ◽  
Vol 365 (2) ◽  
pp. 282-288 ◽  
Author(s):  
D.G. Pérez ◽  
L. Zunino ◽  
M. Garavaglia ◽  
O.A. Rosso
2017 ◽  
Vol 6 (3) ◽  
pp. 85
Author(s):  
ömer önalan

In this paper we present a novel model to analyze the behavior of random asset price process under the assumption that the stock price pro-cess is governed by time-changed generalized mixed fractional Brownian motion with an inverse gamma subordinator. This model is con-structed by introducing random time changes into generalized mixed fractional Brownian motion process. In practice it has been observed that many different time series have long-range dependence property and constant time periods. Fractional Brownian motion provides a very general model for long-term dependent and anomalous diffusion regimes. Motivated by this facts in this paper we investigated the long-range dependence structure and trapping events (periods of prices stay motionless) of CSCO stock price return series. The constant time periods phenomena are modeled using an inverse gamma process as a subordinator. Proposed model include the jump behavior of price process because the gamma process is a pure jump Levy process and hence the subordinated process also has jumps so our model can be capture the random variations in volatility. To show the effectiveness of proposed model, we applied the model to calculate the price of an average arithmetic Asian call option that is written on Cisco stock. In this empirical study first the statistical properties of real financial time series is investigated and then the estimated model parameters from an observed data. The results of empirical study which is performed based on the real data indicated that the results of our model are more accuracy than the results based on traditional models.


2006 ◽  
Vol 38 (02) ◽  
pp. 451-464 ◽  
Author(s):  
T. J. Kozubowski ◽  
M. M. Meerschaert ◽  
K. Podgórski

Fractional Laplace motion is obtained by subordinating fractional Brownian motion to a gamma process. Used recently to model hydraulic conductivity fields in geophysics, it might also prove useful in modeling financial time series. Its one-dimensional distributions are scale mixtures of normal laws, where the stochastic variance has the generalized gamma distribution. These one-dimensional distributions are more peaked at the mode than is a Gaussian distribution, and their tails are heavier. In this paper we derive the basic properties of the process, including a new property called stochastic self-similarity. We also study the corresponding fractional Laplace noise, which may exhibit long-range dependence. Finally, we discuss practical methods for simulation.


Author(s):  
Viktor Bondarenko

Fractional Brownian motion as a method for estimating the parameters of a stochastic process by variance and one-step increment covariance is proposed and substantiated. The root-mean-square consistency of the constructed estimates has been proven. The obtained results complement and generalize the consequences of limit theorems for fractional Brownian motion, that have been proved in the number of articles. The necessity to estimate the variance is caused by the absence of a base unit of time and the estimation of the covariance allows one to determine the Hurst exponent. The established results let the known limit theorems to be used to construct goodness-of-fit criteria for the hypothesis “the observed time series is a transformation of fractional Brownian motion” and to estimate the error of optimal forecasting for time series.


Author(s):  
Marisa Mohr ◽  
Florian Wilhelm ◽  
Ralf Möller

The estimation of the qualitative behaviour of fractional Brownian motion is an important topic for modelling real-world applications. Permutation entropy is a well-known approach to quantify the complexity of univariate time series in a scalar-valued representation. As an extension often used for outlier detection, weighted permutation entropy takes amplitudes within time series into account. As many real-world problems deal with multivariate time series, these measures need to be extended though. First, we introduce multivariate weighted permutation entropy, which is consistent with standard multivariate extensions of permutation entropy. Second, we investigate the behaviour of weighted permutation entropy on both univariate and multivariate fractional Brownian motion and show revealing results.


GIS Business ◽  
2016 ◽  
Vol 10 (6) ◽  
pp. 46-52
Author(s):  
S. J. Bhatt ◽  
H. V. Dedania ◽  
Vipul R. Shah

A predictability index for time series of a financial market vector consisting of chosen market parameters is suggested providing a measure of long range predictability of the market. It is based on fractional Brownian motion that includes Brownian motion as a particular case followed by the time series of financial market parameters. By analyzing respective time series, these indices are computed for parameters like volatility, FII investments in the local market, IIP numbers, CPI numbers, Dow Jones Index, different stock market indices, currency rates, and gold prices.


2006 ◽  
Vol 38 (2) ◽  
pp. 451-464 ◽  
Author(s):  
T. J. Kozubowski ◽  
M. M. Meerschaert ◽  
K. Podgórski

Fractional Laplace motion is obtained by subordinating fractional Brownian motion to a gamma process. Used recently to model hydraulic conductivity fields in geophysics, it might also prove useful in modeling financial time series. Its one-dimensional distributions are scale mixtures of normal laws, where the stochastic variance has the generalized gamma distribution. These one-dimensional distributions are more peaked at the mode than is a Gaussian distribution, and their tails are heavier. In this paper we derive the basic properties of the process, including a new property called stochastic self-similarity. We also study the corresponding fractional Laplace noise, which may exhibit long-range dependence. Finally, we discuss practical methods for simulation.


Author(s):  
S. J. Bhatt ◽  
H. V. Dedania ◽  
Vipul R. Shah

A predictability index for time series of a financial market vector consisting of chosen market parameters is suggested providing a measure of long range predictability of the market. It is based on fractional Brownian motion that includes Brownian motion as a particular case followed by the time series of financial market parameters. By analyzing respective time series, these indices are computed for parameters like volatility, FII investments in the local market, IIP numbers, CPI numbers, Dow Jones Index, different stock market indices, currency rates, and gold prices.


2011 ◽  
Vol 11 (01) ◽  
pp. 49-70 ◽  
Author(s):  
ALFREDAS RAČKAUSKAS ◽  
CHARLES SUQUET

In this paper, we study long memory phenomenon of functional time series. We consider an operator fractional Brownian motion with values in a Hilbert space defined via operator-valued Hurst coefficient. We prove that this process is a limiting one for polygonal lines constructed from partial sums of time series having space varying long memory.


Sign in / Sign up

Export Citation Format

Share Document