Rectified transport of chiral active particles in the two-dimensional channel with varied upper wall

2018 ◽  
Vol 491 ◽  
pp. 771-778 ◽  
Author(s):  
Xiao-qun Huang ◽  
Meng An
Soft Matter ◽  
2021 ◽  
Author(s):  
Claudio Maggi ◽  
Matteo Paoluzzi ◽  
Andrea Crisanti ◽  
Emanuela Zaccarelli ◽  
Nicoletta Gnan

We perform large-scale computer simulations of an off-lattice two-dimensional model of active particles undergoing a motility-induced phase separation (MIPS) to investigate the systems critical behaviour close to the critical point...


Soft Matter ◽  
2018 ◽  
Vol 14 (21) ◽  
pp. 4388-4395 ◽  
Author(s):  
Bao-quan Ai ◽  
Zhi-gang Shao ◽  
Wei-rong Zhong

We study a binary mixture of polar chiral (counterclockwise or clockwise) active particles in a two-dimensional box with periodic boundary conditions.


Soft Matter ◽  
2016 ◽  
Vol 12 (14) ◽  
pp. 3406-3411 ◽  
Author(s):  
B. van der Meer ◽  
L. Filion ◽  
M. Dijkstra

2021 ◽  
Author(s):  
Amir Haluts ◽  
Sylvia F. Garza Reyes ◽  
Dan Gorbonos ◽  
Alex Jordan ◽  
Nir S. Gov

ABSTRACTA long-standing question in animal behaviour is how organisms solve complex tasks. Here we explore how the dynamics of animal behaviour in the ubiquitous tasks of mate-search and competition can arise from a physics-based model of effective interactions. Male orb-weaving spiders of the genus Trichonephila are faced with the daunting challenge of entering the web of a much larger and potentially cannibalistic female, approaching her, and fending off rival males. The interactions that govern the dynamics of males within the confined two-dimensional arena of the female’s web are dominated by seismic vibrations. This unifying modality allows us to describe the spiders as interacting active particles, responding only to effective forces of attraction and repulsion due to the female and rival males. Our model is based on a detailed analysis of experimental spider trajectories, obtained during the approach of males towards females, and amidst their interactions with rival males of different sizes. The dynamics of ’spider particles’ that emerges from our theory allows us to explain a puzzling relationship between the density of males on the web and the reproductive advantages of large males. Our results provide strong evidence that the simple physical rules at the basis of our model can give rise to complex fitness related behaviours in this system.


2020 ◽  
Vol 34 (12) ◽  
pp. 2050125 ◽  
Author(s):  
Yu-Qing Wang ◽  
Cheng Huang ◽  
Chao-Fan Zhou ◽  
Chang Xu ◽  
Sheng-Jie Qiang ◽  
...  

Relationship between matter and energy transport has always been one of the key issues that researchers have been searching for in statistical physics and complexity science. In many transport phenomena, the active transport with zero or even no external force in life activities has attracted extensive attention of scholars. As a special kind of active particles, active Brownian particles have received the attention of physicists and biophysicists. These active particles are natural or artificially designed particles, whose scale is in the order of micrometer or nanometer. Different from the traditional passive Brownian particles driven by the equilibrium heat wave generated by the random collision of the surrounding fluid molecules, active Brownian particles can extract energy from their own environment to drive their own motion. Here, directional transport process of active particles in the two-dimensional asymmetric ratchet potential field is analyzed. Both the overdamped medium and the critically damped one are emphasized. Langevin equations with inertia term are introduced to describe the impacts of the self-driven force, friction coefficient, etc. on the directional motion. Then, the average particle speed is found. Thereafter, the relationships between the speed and critical parameters like self-driven force, friction coefficient, etc. are obtained. Two different dynamical domination mechanisms are found, which are expressed as the random collision domination and the self-driven force domination, respectively. Furthermore, the random collision domination is found to correspond to the much higher peak of the two-dimensional asymmetric Brownian rachet potential field, while the self-driven force domination is found to correspond to the much lower peak of the introduced potential. The study will be helpful for discovering the stochastic thermodynamics mechanisms in nonlinear dynamics and nonlinear properties of such multibody interaction system in statistical physics and complex system science.


Soft Matter ◽  
2018 ◽  
Vol 14 (38) ◽  
pp. 7850-7858 ◽  
Author(s):  
Jing-jing Liao ◽  
Xiao-qun Huang ◽  
Bao-quan Ai

Rectification of interacting active particles is numerically investigated in a two-dimensional time-oscillating potential.


1966 ◽  
Vol 24 ◽  
pp. 118-119
Author(s):  
Th. Schmidt-Kaler

I should like to give you a very condensed progress report on some spectrophotometric measurements of objective-prism spectra made in collaboration with H. Leicher at Bonn. The procedure used is almost completely automatic. The measurements are made with the help of a semi-automatic fully digitized registering microphotometer constructed by Hög-Hamburg. The reductions are carried out with the aid of a number of interconnected programmes written for the computer IBM 7090, beginning with the output of the photometer in the form of punched cards and ending with the printing-out of the final two-dimensional classifications.


1966 ◽  
Vol 24 ◽  
pp. 3-5
Author(s):  
W. W. Morgan

1. The definition of “normal” stars in spectral classification changes with time; at the time of the publication of theYerkes Spectral Atlasthe term “normal” was applied to stars whose spectra could be fitted smoothly into a two-dimensional array. Thus, at that time, weak-lined spectra (RR Lyrae and HD 140283) would have been considered peculiar. At the present time we would tend to classify such spectra as “normal”—in a more complicated classification scheme which would have a parameter varying with metallic-line intensity within a specific spectral subdivision.


Sign in / Sign up

Export Citation Format

Share Document