Effects of variable speed limits on traffic operation characteristics and environmental impacts under car-following scenarios: Simulations in the framework of Kerner’s three-phase traffic theory

2018 ◽  
Vol 509 ◽  
pp. 567-577 ◽  
Author(s):  
Haifei Yang ◽  
Xue Zhai ◽  
Changjiang Zheng
2012 ◽  
Vol 23 (09) ◽  
pp. 1250060 ◽  
Author(s):  
YIZHI WANG ◽  
YI ZHANG ◽  
JIANMING HU ◽  
LI LI

One frequently observed congested traffic flow pattern is wide moving jam (WMJ), in which the average vehicle speed is very low and the density is very high. In some recent studies, variable speed limits (VSL) were proposed as effective measures to eliminate or abate the influence of jam waves. However, in most of these studies, the stochastic features of driving behaviors and the resulting uncertainty of traffic flow dynamics were not fully considered. In this paper, we use cellular automaton (CA) model-based simulations to test the performances of different VSL control strategies and apply the three-phase traffic theory to further analyze the obtained results. Based on the simulation results, we got two novel findings. Firstly, we observed seven, instead of the previously assumed six, states of traffic flow in the evolution process of WMJ, when VSL were applied. Secondly and more importantly, we found that inappropriate speed limit may induce new WMJ and exaggerate congestions in two ways: one way corresponds to an F → J transition and the other corresponds to an F → S → J transition. Based on these findings, the appropriate lower bound of VSL was finally discussed in this paper.


2014 ◽  
Vol 15 (2) ◽  
pp. 130-143 ◽  
Author(s):  
Alvaro Garcia-Castro ◽  
Andres Monzon

Abstract Changing factors (mainly traffic intensity and weather conditions) affecting road conditions require a suitable optimal speed at any time. To solve this problem, variable speed limit systems (VSL) - as opposed to fixed limits - have been developed in recent decades. This term has included a number of speed management systems, most notably dynamic speed limits (DSL). In order to avoid the indiscriminate use of both terms in the literature, this paper proposes a simple classification and offers a review of some experiences, how their effects are evaluated and their results This study also presents a key indicator which measures the speed homogeneity and a methodology to obtain the data based on floating cars and GPS technology applying it to a case study on a section of the M30 urban motorway in Madrid (Spain). It also presents the relation between this indicator and road performance and emissions values.


2016 ◽  
Vol 40 (3) ◽  
pp. 843-852 ◽  
Author(s):  
Minghui Ma ◽  
Shidong Liang

Traffic congestion is a common problem in merging regions of freeway networks. An adaptive integrated control method involving variable speed limits and ramp metering is presented with the aim of easing traffic congestion at merging regions. The problem of the imbalanced rights of ways of the upstream mainline and on-ramp at the merging region is solved by constructing the evaluation indices of congestion degree. Specifically, the traffic density and queue length of the upstream mainline and on-ramp are selected for use in the evaluation indices. Then, an adaptive controller is designed, integrating variable speed limits and ramp metering. The proposed method is tested in simulations considering a real freeway network in China calibrated by real traffic variables. The results show that the proposed adaptive integrated control method can prevent traffic flow breakdown and maintain a high outflow at the merging region during peak periods. The adaptive integrated control may lead to a 17% improvement in traffic delay.


Sign in / Sign up

Export Citation Format

Share Document