scholarly journals The sub-fractional CEV model

2021 ◽  
Vol 573 ◽  
pp. 125974
Author(s):  
Axel A. Araneda ◽  
Nils Bertschinger
Keyword(s):  
Author(s):  
Alexandre Antonov ◽  
Michael Konikov ◽  
David Rufino ◽  
Michael Spector

2018 ◽  
Vol 15 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Ivan Burtnyak ◽  
Anna Malytska

This article studies the derivatives pricing using a method of spectral analysis, a theory of singular and regular perturbations. Using a risk-neutral assessment, the authors obtain the Cauchy problem, which allows to calculate the approximate price of derivative assets and their volatility based on the diffusion equation with fast and slow variables of nonlocal volatility, and they obtain a model with multidimensional stochastic volatility. Applying a spectral theory of self-adjoint operators in Hilbert space and a theory of singular and regular perturbations, an analytic formula for approximate asset prices is established, which is described by the CEV model with stochastic volatility dependent on l-fast variables and r-slowly variables, l ≥ 1, r ≥ 1, l ∈ N, r ∈ N and a local variable. Applying the Sturm-Liouville theory, Fredholm’s alternatives, as well as the analysis of singular and regular perturbations at different time scales, the authors obtained explicit formulas for derivatives price approximations. To obtain explicit formulae, it is necessary to solve 2l Poisson equations.


2000 ◽  
Vol 03 (04) ◽  
pp. 661-674 ◽  
Author(s):  
C. F. LO ◽  
P. H. YUEN ◽  
C. H. HUI

This paper provides a method for pricing options in the constant elasticity of variance (CEV) model environment using the Lie-algebraic technique when the model parameters are time-dependent. Analytical solutions for the option values incorporating time-dependent model parameters are obtained in various CEV processes with different elasticity factors. The numerical results indicate that option values are sensitive to volatility term structures. It is also possible to generate further results using various functional forms for interest rate and dividend term structures. Furthermore, the Lie-algebraic approach is very simple and can be easily extended to other option pricing models with well-defined algebraic structures.


2018 ◽  
Vol 33 (2) ◽  
pp. 258-290 ◽  
Author(s):  
Dan Pirjol ◽  
Lingjiong Zhu

We present a rigorous study of the short maturity asymptotics for Asian options with continuous-time averaging, under the assumption that the underlying asset follows the constant elasticity of variance (CEV) model. The leading order short maturity limit of the Asian option prices under the CEV model is obtained in closed form. We propose an analytical approximation for the Asian options prices which reproduces the exact short maturity asymptotics, and demonstrate good numerical agreement of the asymptotic results with Monte Carlo simulations and benchmark test cases for option parameters relevant for practical applications.


2019 ◽  
Vol 06 (02) ◽  
pp. 1950018
Author(s):  
Kevin Z. Tong ◽  
Allen Liu

In this paper, we extend the classical constant elasticity of variance (CEV) model to a subdiffusive CEV model, where the underlying CEV process is time changed by an inverse [Formula: see text]-stable subordinator. The new model can capture the subdiffusive characteristics of financial markets. We find the corresponding fractional Fokker–Planck equation governing the PDF of the new process. We also derive the analytical formula for option prices in terms of eigenfunction expansion. This method avoids the evaluation of PDF of an inverse [Formula: see text]-stable variable and also eliminates the need for numerical integration to calculate the option prices. We numerically investigate the sensitivities of the option prices to the key parameters of the newly developed model.


2020 ◽  
Vol 2020 ◽  
pp. 1-19 ◽  
Author(s):  
Danping Li ◽  
Ruiqing Chen ◽  
Cunfang Li

This paper focuses on a stochastic differential game played between two insurance companies, a big one and a small one. In our model, the basic claim process is assumed to follow a Brownian motion with drift. Both of two insurance companies purchase the reinsurance, respectively. The big company has sufficient asset to invest in the risky asset which is described by the constant elasticity of variance (CEV) model and acquire new business like acting as a reinsurance company of other insurance companies, while the small company can invest in the risk-free asset and purchase reinsurance. The game studied here is zero-sum where there is a single exponential utility. The big company is trying to maximize the expected exponential utility of the terminal wealth to keep its advantage on surplus while simultaneously the small company is trying to minimize the same quantity to reduce its disadvantage. In this paper, we describe the Nash equilibrium of the game and prove a verification theorem for the exponential utility. By solving the corresponding Fleming-Bellman-Isaacs equations, we derive the optimal reinsurance and investment strategies. Furthermore, numerical examples are presented to show our results.


Sign in / Sign up

Export Citation Format

Share Document