Nonlocal quantum system with fractal distribution of states

2021 ◽  
Vol 574 ◽  
pp. 126009
Author(s):  
Vasily E. Tarasov
2014 ◽  
Vol 7 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Chenxu Luo ◽  
Changlong Du ◽  
Longjiang Xu ◽  
Kehong Zheng

Author(s):  
Klaus Morawetz

The historical development of kinetic theory is reviewed with respect to the inclusion of virial corrections. Here the theory of dense gases differs from quantum liquids. While the first one leads to Enskog-type of corrections to the kinetic theory, the latter ones are described by quasiparticle concepts of Landau-type theories. A unifying kinetic theory is envisaged by the nonlocal quantum kinetic theory. Nonequilibrium phenomena are the essential processes which occur in nature. Any evolution is built up of involved causal networks which may render a new state of quality in the course of time evolution. The steady state or equilibrium is rather the exception in nature, if not a theoretical abstraction at all.


Author(s):  
Frank S. Levin

Chapter 7 illustrates the results obtained by applying the Schrödinger equation to a simple pedagogical quantum system, the particle in a one-dimensional box. The wave functions are seen to be sine waves; their wavelengths are evaluated and used to calculate the quantized energies via the de Broglie relation. An energy-level diagram of some of the energies is constructed; on it are illustrations of the corresponding wave functions and probability distributions. The wave functions are seen to be either symmetric or antisymmetric about the midpoint of the line representing the box, thereby providing a lead-in to the later exploration of certain symmetry properties of multi-electron atoms. It is next pointed out that the Schrödinger equation for this system is identical to Newton’s equation describing the vibrations of a stretched musical string. The different meaning of the two solutions is discussed, as is the concept and structure of linear superpositions of them.


2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Robert L. Kosut ◽  
Tak-San Ho ◽  
Herschel Rabitz
Keyword(s):  

2021 ◽  
Vol 3 (1) ◽  
pp. 53-67
Author(s):  
Ghenadie Mardari

The phenomenon of quantum erasure exposed a remarkable ambiguity in the interpretation of quantum entanglement. On the one hand, the data is compatible with the possibility of arrow-of-time violations. On the other hand, it is also possible that temporal non-locality is an artifact of post-selection. Twenty years later, this problem can be solved with a quantum monogamy experiment, in which four entangled quanta are measured in a delayed-choice arrangement. If Bell violations can be recovered from a “monogamous” quantum system, then the arrow of time is obeyed at the quantum level.


2021 ◽  
Vol 20 (8) ◽  
Author(s):  
Wooyeong Song ◽  
Marcin Wieśniak ◽  
Nana Liu ◽  
Marcin Pawłowski ◽  
Jinhyoung Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document