entropy production rate
Recently Published Documents


TOTAL DOCUMENTS

181
(FIVE YEARS 58)

H-INDEX

17
(FIVE YEARS 3)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Shun Otsubo ◽  
Sreekanth K. Manikandan ◽  
Takahiro Sagawa ◽  
Supriya Krishnamurthy

AbstractThe rate of entropy production provides a useful quantitative measure of a non-equilibrium system and estimating it directly from time-series data from experiments is highly desirable. Several approaches have been considered for stationary dynamics, some of which are based on a variational characterization of the entropy production rate. However, the issue of obtaining it in the case of non-stationary dynamics remains largely unexplored. Here, we solve this open problem by demonstrating that the variational approaches can be generalized to give the exact value of the entropy production rate even for non-stationary dynamics. On the basis of this result, we develop an efficient algorithm that estimates the entropy production rate continuously in time by using machine learning techniques and validate our numerical estimates using analytically tractable Langevin models in experimentally relevant parameter regimes. Our method only requires time-series data for the system of interest without any prior knowledge of the system’s parameters.


Author(s):  
Sosuke Ito

Abstract We discuss a relationship between information geometry and the Glansdorff-Prigogine criterion for stability. For the linear master equation, we found a relation between the line element and the excess entropy production rate. This relation leads to a new perspective of stability in a nonequilibrium steady-state. We also generalize the Glansdorff-Prigogine criterion for stability based on information geometry. Our information-geometric criterion for stability works well for the nonlinear master equation, where the Glansdorff-Prigogine criterion for stability does not work well. We derive a trade-off relation among the fluctuation of the observable, the mean change of the observable, and the intrinsic speed. We also derive a novel thermodynamic trade-off relation between the excess entropy production rate and the intrinsic speed. These trade-off relations provide a physical interpretation of our information-geometric criterion for stability. We illustrate our information-geometric criterion for stability by an autocatalytic reaction model, where dynamics are driven by a nonlinear master equation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Timothée Leleu ◽  
Farad Khoyratee ◽  
Timothée Levi ◽  
Ryan Hamerly ◽  
Takashi Kohno ◽  
...  

AbstractThe development of physical simulators, called Ising machines, that sample from low energy states of the Ising Hamiltonian has the potential to transform our ability to understand and control complex systems. However, most of the physical implementations of such machines have been based on a similar concept that is closely related to relaxational dynamics such as in simulated, mean-field, chaotic, and quantum annealing. Here we show that dynamics that includes a nonrelaxational component and is associated with a finite positive Gibbs entropy production rate can accelerate the sampling of low energy states compared to that of conventional methods. By implementing such dynamics on field programmable gate array, we show that the addition of nonrelaxational dynamics that we propose, called chaotic amplitude control, exhibits exponents of the scaling with problem size of the time to find optimal solutions and its variance that are smaller than those of relaxational schemes recently implemented on Ising machines.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1393
Author(s):  
Eun-jin Kim

Information theory provides an interdisciplinary method to understand important phenomena in many research fields ranging from astrophysical and laboratory fluids/plasmas to biological systems. In particular, information geometric theory enables us to envision the evolution of non-equilibrium processes in terms of a (dimensionless) distance by quantifying how information unfolds over time as a probability density function (PDF) evolves in time. Here, we discuss some recent developments in information geometric theory focusing on time-dependent dynamic aspects of non-equilibrium processes (e.g., time-varying mean value, time-varying variance, or temperature, etc.) and their thermodynamic and physical/biological implications. We compare different distances between two given PDFs and highlight the importance of a path-dependent distance for a time-dependent PDF. We then discuss the role of the information rate Γ=dLdt and relative entropy in non-equilibrium thermodynamic relations (entropy production rate, heat flux, dissipated work, non-equilibrium free energy, etc.), and various inequalities among them. Here, L is the information length representing the total number of statistically distinguishable states a PDF evolves through over time. We explore the implications of a geodesic solution in information geometry for self-organization and control.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1092
Author(s):  
Jainagesh A. Sekhar

Self-organization that leads to the discontinuous emergence of optimized new patterns is related to entropy generation and the export of entropy. Compared to the original pattern that the new, self-organized pattern replaces, the new features could involve an abrupt change in the pattern-volume. There is no clear principle of pathway selection for self-organization that is known for triggering a particular new self-organization pattern. The new pattern displays different types of boundary-defects necessary for stabilizing the new order. Boundary-defects can contain high entropy regions of concentrated chemical species. On the other hand, the reorganization (or refinement) of an established pattern is a more kinetically tractable process, where the entropy generation rate varies continuously with the imposed variables that enable and sustain the pattern features. The maximum entropy production rate (MEPR) principle is one possibility that may have predictive capability for self-organization. The scale of shapes that form or evolve during self-organization and reorganization are influenced by the export of specific defects from the control volume of study. The control volume (CV) approach must include the texture patterns to be located inside the CV for the MEPR analysis to be applicable. These hypotheses were examined for patterns that are well-characterized for solidification and wear processes. We tested the governing equations for bifurcations (the onset of new patterns) and for reorganization (the fine tuning of existing patterns) with published experimental data, across the range of solidification morphologies and nonequilibrium phases, for metallic glass and featureless crystalline solids. The self-assembling features of surface-texture patterns for friction and wear conditions were also modeled with the entropy generation (MEPR) principle, including defect production (wear debris). We found that surface texture and entropy generation in the control volume could be predictive for self-organization. The main results of this study provide support to the hypothesis that self-organized patterns are a consequence of the maximum entropy production rate per volume principle. Patterns at any scale optimize a certain outcome and have utility. We discuss some similarities between the self-organization behavior of both inanimate and living systems, with ideas regarding the optimizing features of self-organized pattern features that impact functionality, beauty, and consciousness.


Author(s):  
M. Zubair ◽  
Mubashira Rahseed ◽  
Rabia Saleem ◽  
G. Abbas

This paper aims to discuss the gravitationally induced particle creation in the framework of [Formula: see text] theory, which involves the non-minimal coupling (NMC) between Gauss–Bonnet (GB) invariant, [Formula: see text] and trace of the energy–momentum tensor (EMT), [Formula: see text]. Here, NMC between matter and gravitational sector results in non-divergence of EMT. We discuss the generalized conservation equation for the irreversible process of matter creation with the help of generalized second law of thermodynamics (GSLT). Particle creation rate, creation pressure, entropy production rate and temperature are obtained for this theory using flat FRW geometry. We work on three particular [Formula: see text] models and study cosmological implications of open irreversible thermodynamics. Furthermore, the impact of NMC on cosmological evolution and entropy production is briefly discussed.


Author(s):  
Christian Maes

We review the physical meaning and mathematical implementation of the condition of local detailed balance for a class of nonequilibrium mesoscopic processes. A central concept is that of fluctuating entropy flux for which the steady average gives the mean entropy production rate. We repeat how local detailed balance is essentially equivalent to the widely discussed fluctuation relations for that entropy flux and hence is at most ``only half of the story.''


2021 ◽  
Vol 118 (24) ◽  
pp. e2103779118
Author(s):  
Li Xu ◽  
Denis Patterson ◽  
Ann Carla Staver ◽  
Simon Asher Levin ◽  
Jin Wang

The frequency distributions can characterize the population-potential landscape related to the stability of ecological states. We illustrate the practical utility of this approach by analyzing a forest–savanna model. Savanna and forest states coexist under certain conditions, consistent with past theoretical work and empirical observations. However, a grassland state, unseen in the corresponding deterministic model, emerges as an alternative quasi-stable state under fluctuations, providing a theoretical basis for the appearance of widespread grasslands in some empirical analyses. The ecological dynamics are determined by both the population-potential landscape gradient and the steady-state probability flux. The flux quantifies the net input/output to the ecological system and therefore the degree of nonequilibriumness. Landscape and flux together determine the transitions between stable states characterized by dominant paths and switching rates. The intrinsic potential landscape admits a Lyapunov function, which provides a quantitative measure of global stability. We find that the average flux, entropy production rate, and free energy have significant changes near bifurcations under both finite and zero fluctuation. These may provide both dynamical and thermodynamic origins of the bifurcations. We identified the variances in observed frequency time traces, fluctuations, and time irreversibility as kinematic measures for bifurcations. This framework opens the way to characterize ecological systems globally, to uncover how they change among states, and to quantify the emergence of quasi-stable states under stochastic fluctuations.


2021 ◽  
Vol 34 (9) ◽  
pp. 3729-3731
Author(s):  
Seiji Kato ◽  
Fred G. Rose

AbstractThis reply addresses a comment on the study by Kato and Rose (herein referred to as KR2020). The comment raises four points of criticism. These are 1) on notations used, 2) on a steady-state assumption made, 3) on the result of entropy production change with Earth’s albedo, and 4) disputing the statement that a simple energy balance model cannot produce absorption temperature change with Earth’s albedo. We concur on points 2 and 3 raised by the comment and recognize the significance of entropy storage due to ocean heating in the analysis of how entropy production changes with the shortwave absorptivity of Earth. Once entropy storage is considered, the results of KR2020 indicate that the increase of entropy production rate by irreversible processes, including by radiative processes, is smaller than the increase of entropy storage when absorptivity is increased. This is a manifestation of the primary contribution of positive top-of-atmosphere net irradiances (i.e., energy input to Earth) to heating the ocean and is consistent with an energy budget perspective. Once entropy storage is separated, the entropy production by irreversible processes increases with the shortwave absorptivity.


Sign in / Sign up

Export Citation Format

Share Document