scholarly journals Quantum system compression: A Hamiltonian guided walk through Hilbert space

2021 ◽  
Vol 103 (1) ◽  
Author(s):  
Robert L. Kosut ◽  
Tak-San Ho ◽  
Herschel Rabitz
Keyword(s):  
2020 ◽  
Vol 6 (16) ◽  
pp. eaaw6664 ◽  
Author(s):  
Armin Tavakoli ◽  
Massimiliano Smania ◽  
Tamás Vértesi ◽  
Nicolas Brunner ◽  
Mohamed Bourennane

Self-testing represents the strongest form of certification of a quantum system. Here, we theoretically and experimentally investigate self-testing of nonprojective quantum measurements. That is, how can one certify, from observed data only, that an uncharacterized measurement device implements a desired nonprojective positive-operator valued measure (POVM). We consider a prepare-and-measure scenario with a bound on the Hilbert space dimension and develop methods for (i) robustly self-testing extremal qubit POVMs and (ii) certifying that an uncharacterized qubit measurement is nonprojective. Our methods are robust to noise and thus applicable in practice, as we demonstrate in a photonic experiment. Specifically, we show that our experimental data imply that the implemented measurements are very close to certain ideal three- and four-outcome qubit POVMs and hence non-projective. In the latter case, the data certify a genuine four-outcome qubit POVM. Our results open interesting perspective for semi–device-independent certification of quantum devices.


2012 ◽  
Vol 14 ◽  
pp. 376-382
Author(s):  
ANDRZEJ HERDEGEN

Casimir effect, in most general terms, is the backreaction of a quantum system responding to an adiabatic change of external conditions. This backreaction is expected to be quantitatively measured by a change in the expectation value of a certain energy observable of the system. However, for this concept to be applicable, the system has to retain its identity in the process. Most prevailing tendencies in the analysis of the effect seem to ignore this question. In general, a quantum theory is defined by an algebra of observables, whose representations by operators in a Hilbert space define concrete physical systems described by the theory. A quantum system retains its identity if both the algebra as well as its representation do not change. We discuss the resulting restrictions for admissible models of changing external conditions. These ideas are applied to quantum field models. No infinities arise, if the algebraic demands are respected.


Author(s):  
Vladimir V. Kornyak

Any Hilbert space with composite dimension can be factored into a tensor product of smaller Hilbert spaces. This allows us to decompose a quantum system into subsystems. We propose a model based on finite quantum mechanics for a constructive study of such decompositions.


2019 ◽  
Vol 31 (04) ◽  
pp. 1950013 ◽  
Author(s):  
Valter Moretti ◽  
Marco Oppio

As earlier conjectured by several authors and much later established by Solèr, from the lattice-theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. On the other hand, no quantum systems seem to exist that are naturally described in a real or quaternionic Hilbert space. In a previous paper [23], we showed that any quantum system which is elementary from the viewpoint of the Poincaré symmetry group and it is initially described in a real Hilbert space, it can also be described within the standard complex Hilbert space framework. This complex description is unique and more precise than the real one as, for instance, in the complex description, all self-adjoint operators represent observables defined by the symmetry group. The complex picture fulfils the thesis of Solér’s theorem and permits the standard formulation of the quantum Noether’s theorem. The present work is devoted to investigate the remaining case, namely, the possibility of a description of a relativistic elementary quantum system in a quaternionic Hilbert space. Everything is done exploiting recent results of the quaternionic spectral theory that were independently developed. In the initial part of this work, we extend some results of group representation theory and von Neumann algebra theory from the real and complex cases to the quaternionic Hilbert space case. We prove the double commutant theorem also for quaternionic von Neumann algebras (whose proof requires a different procedure with respect to the real and complex cases) and we extend to the quaternionic case a result established in the previous paper concerning the classification of irreducible von Neumann algebras into three categories. In the second part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a quaternionic Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the quaternionic one, all self-adjoint operators represent observables in agreement with Solèr’s thesis, the standard quantum version of Noether theorem may be formulated and the notion of composite system may be given in terms of tensor product of elementary systems. In the third part of the paper, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the quantum system and we adopt a notion of continuity referred to the states viewed as probability measures on the elementary propositions. Also in this case, the final result proves that there exists a unique (up to sign) Poincaré invariant complex structure making the theory complex and completely fitting into Solèr’s picture. The overall conclusion is that relativistic elementary systems are naturally and better described in complex Hilbert spaces even if starting from a real or quaternionic Hilbert space formulation and this complex description is uniquely fixed by physics.


1994 ◽  
Vol 09 (22) ◽  
pp. 3913-3924
Author(s):  
BELAL E. BAAQUIE

We review Prigogine's model of quantum measurement. The measuring apparatus is considered to be an unstable quantum system with its state vector belonging to a rigged Hilbert space. Time irreversibility arises due to the dissipative nature of the measuring apparatus (an unstable quantum system) which induces decoherence in the system being measured. Friedrichs' model is used to concretely illustrate these ideas.


1995 ◽  
Vol 07 (07) ◽  
pp. 1105-1121 ◽  
Author(s):  
PAUL BUSCH ◽  
GIANNI CASSINELLI ◽  
PEKKA J. LAHTI

The theme of this paper is to represent the states of a quantum system by means of probability measures. We fix a positive operator valued measure E on a measurable space (Ω, ℬ(Ω)) acting in a Hilbert space ℋ, and we study the properties of the mapping that it induces from the set of trace class operators on ℋ to the set of measures on (Ω, ℬ(Ω)). In particular, the injectivity and the surjectivity of this map are characterised in terms of the properties of E.


Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 995
Author(s):  
Barış Çakmak ◽  
Özgür E. Müstecaplıoğlu ◽  
Mauro Paternostro ◽  
Bassano Vacchini ◽  
Steve Campbell

We investigate the implications of quantum Darwinism in a composite quantum system with interacting constituents exhibiting a decoherence-free subspace. We consider a two-qubit system coupled to an N-qubit environment via a dephasing interaction. For excitation preserving interactions between the system qubits, an analytical expression for the dynamics is obtained. It demonstrates that part of the system Hilbert space redundantly proliferates its information to the environment, while the remaining subspace is decoupled and preserves clear non-classical signatures. For measurements performed on the system, we establish that a non-zero quantum discord is shared between the composite system and the environment, thus violating the conditions of strong Darwinism. However, due to the asymmetry of quantum discord, the information shared with the environment is completely classical for measurements performed on the environment. Our results imply a dichotomy between objectivity and classicality that emerges when considering composite systems.


2007 ◽  
Vol 14 (01) ◽  
pp. 117-126 ◽  
Author(s):  
Neal G. Anderson

Fundamental studies of quantum measurements and their capacity to acquire information are typically based on scenarios in which the full Hilbert space of the measured quantum system is open to measurement interactions. In this work, we consider a class of incomplete quantum measurements — quantum subspace measurements (QSM's) — for which all measurement interactions are restricted to an arbitrary but specified subspace of the measured system Hilbert space. We define QSM's formally through a condition on the measurement Hamiltonian, obtain forms for the post-measurement states and positive operators (POVM elements) associated with QSM's acting in a specified subspace, and upper bound the accessible information for such measurements. Characteristic features of QSM's are identified and discussed.


Sign in / Sign up

Export Citation Format

Share Document