Dielectric and magnetic properties of Zn-substituted Co2Y barium hexaferrite prepared by sol–gel auto combustion method

2016 ◽  
Vol 494 ◽  
pp. 33-40 ◽  
Author(s):  
I. Odeh ◽  
H.M. El Ghanem ◽  
S.H. Mahmood ◽  
S. Azzam ◽  
I. Bsoul ◽  
...  
Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 558
Author(s):  
Thanida Charoensuk ◽  
Wannisa Thongsamrit ◽  
Chesta Ruttanapun ◽  
Pongsakorn Jantaratana ◽  
Chitnarong Sirisathitkul

Solution–processing methods were investigated as viable alternatives to produce the polymer-bonded barium hexaferrite (BaM). BaM powders were first synthesized by using the sol-gel auto-combustion method. While the ignition period in two synthesis batches varied, the morphology of hexagonal microplates and nanorods, as well as magnetic properties, were reproduced. To prepare magnetic polymer composites, these BaM powders were then incorporated into the acrylonitrile-butadiene-styrene (ABS) matrix with a weight ratio of 80:20, 70:30, and 60:40 by using the solution casting method. Magnetizations were linearly decreased with a reduction in ferrite loading. Compared to the BaM loose powders and pressed pellet, both remanent and saturation magnetizations were lower and gave rise to comparable values of the squareness. The squareness around 0.5 of BaM samples and their composites revealed the isotropic alignment. Interestingly, the coercivity was significantly increased from 1727–1776 Oe in loose BaM powders to 1874–2052 Oe for the BaM-ABS composites. These composites have potential to be implemented in the additive manufacturing of rare-earth-free magnets.


2020 ◽  
Vol 43 (1) ◽  
pp. 26-42 ◽  
Author(s):  
Zahra Hajian Karahroudi ◽  
Kambiz Hedayati ◽  
Mojtaba Goodarzi

AbstractThis study presents a preparation of SrFe12O19– SrTiO3 nanocomposite synthesis via the green auto-combustion method. At first, SrFe12O19 nanoparticles were synthesized as a core and then, SrTiO3 nanoparticles were prepared as a shell for it to manufacture SrFe12O19–SrTiO3 nanocomposite. A novel sol-gel auto-combustion green synthesis method has been used with lemon juice as a capping agent. The prepared SrFe12O19–SrTiO3 nanocomposites were characterized by using several techniques to characterize their structural, morphological and magnetic properties. The crystal structures of the nanocomposite were investigated via X-ray diffraction (XRD). The morphology of SrFe12O19– SrTiO3 nanocomposite was studied by using a scanning electron microscope (SEM). The elemental composition of the materials was analyzed by an energy-dispersive X-ray (EDX). Magnetic properties and hysteresis loop of nanopowder were characterized via vibrating sample magnetometer (VSM) in the room temperature. Fourier transform infrared spectroscopy (FTIR) spectra of the samples showed the molecular bands of nanoparticles. Also, the photocatalytic behavior of nanocomposites has been checked by the degradation of azo dyes under irradiation of ultraviolet light.


2019 ◽  
Vol 34 (01) ◽  
pp. 2050002
Author(s):  
Wei Zhang ◽  
Aimin Sun ◽  
Xiqian Zhao ◽  
Xiaoguang Pan ◽  
Yingqiang Han

Manganese substituted nickel–copper–cobalt ferrite nanoparticles having the basic composition [Formula: see text] (x = 0.0, 0.1, 0.2, 0.3 and 0.4) were synthesized by sol–gel auto-combustion method. X-ray diffraction (XRD) was used to estimate phase purity and lattice symmetry. All the prepared samples show the single-phase cubic spinel structure. Fourier transform infrared (FTIR) measurements also confirm the cubic spinel structure of the ferrite that is formed. The preparation of samples show these nearly spherical particles by Transmission electron microscopy (TEM). The magnetic properties of Mn[Formula: see text] ion substituted in nickel–copper–cobalt ferrite were studied by Vibrating sample magnetometer (VSM). The saturation magnetization ([Formula: see text]), remanent magnetization [Formula: see text], coercivity [Formula: see text], magnetic moment [Formula: see text] and anisotropy constant [Formula: see text] first increase and then decrease with the increase of [Formula: see text] ions content. They had better magnetism than pure sample and other substituted samples when the substitution amount of [Formula: see text] ions was [Formula: see text]. At [Formula: see text], the maximum values of remanent magnetization [Formula: see text], saturation magnetization [Formula: see text] and coercivity [Formula: see text] are 25.58 emu/g, 61.95 emu/g and 689.76 Oe, respectively. This indicates that the magnetism of ferrite can improve by substituting with the appropriate amount of manganese. However, due to the excess [Formula: see text] ions instead, ferrite magnetism is weakened. This means that these materials can be used in magnetic data storage and recording media.


2018 ◽  
Vol 550 ◽  
pp. 90-95 ◽  
Author(s):  
Nazia Yasmin ◽  
Iqra Inam ◽  
Iftikhar Ahmed Malik ◽  
Maria Zahid ◽  
Muhammad Naeem Ashiq ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document