scholarly journals Vortex configurations on a thin superconducting spherical shell in the presence of a magnetic dipole

2010 ◽  
Vol 470 (19) ◽  
pp. 796-798 ◽  
Author(s):  
Leonardo R.E. Cabral ◽  
J. Albino Aguiar
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mojtaba Karimi Habil ◽  
Carlos J. Zapata–Rodríguez ◽  
Mauro Cuevas ◽  
Samad Roshan Entezar

AbstractWe propose an axisymmetric silicon nanoresonator with designed tapered angle well for the extraordinary enhancement of the decay rate of magnetic dipole (MD) emitters. Due to the resonant coupling of a MD emitter and the MD mode of the subwavelength resonator, the Purcell factor (PF) can easily reach 500, which is significantly higher than the PF when using a silicon nanosphere of the same size. The PF and the resonance frequency are conveniently tuned through the resonator diameter and the taper angle of the blind hole. When supported by a metallic substrate, further enhancement ($$>10^3$$ > 10 3 ) of the MD spontaneous emission is triggered by an image-induced quadrupolar high-Q mode of the nanoantenna. For the sake of comparison we include a critical analysis of the canonical problem that considers a Si spherical shell. Our results might facilitate a novel strategy for promising realizations of chip-scale nanophotonic applications.


2006 ◽  
Vol 176 (9) ◽  
pp. 965
Author(s):  
B.A. Knyazev ◽  
I.A. Kotel'nikov ◽  
A.A. Tyutin ◽  
V.S. Cherkasskii

Radiocarbon ◽  
1997 ◽  
Vol 39 (1) ◽  
pp. 27-32 ◽  
Author(s):  
John C. Vogel ◽  
Joel Kronfeld

Twenty paired 14C and U/Th dates covering most of the past 50,000 yr have been obtained on a stalagmite from the Cango Caves in South Africa as well as some additional age-pairs on two stalagmites from Tasmania that partially fill a gap between 7 ka and 17 ka ago. After allowance is made for the initial apparent 14C ages, the age-pairs between 7 ka and 20 ka show satisfactory agreement with the coral data of Bard et al. (1990, 1993). The results for the Cango stalagmite between 25 ka and 50 ka show the 14C dates to be substantially younger than the U/Th dates except at 49 ka and 29 ka, where near correspondence occurs. The discrepancies may be explained by variations in 14C production caused by changes in the magnetic dipole field of the Earth. A tentative calibration curve for this period is offered.


Sign in / Sign up

Export Citation Format

Share Document