Body segment inertial parameters estimation of the lower trunk of pregnant Japanese women aimed at practical using in motion analysis

Physiotherapy ◽  
2015 ◽  
Vol 101 ◽  
pp. e1455-e1456
Author(s):  
Y. Sunaga ◽  
M. Anan ◽  
M. Takahashi ◽  
K. Shinkoda
2016 ◽  
Vol 55 ◽  
pp. 173-182 ◽  
Author(s):  
Yasuyo Sunaga ◽  
Naohiko Kanemura ◽  
Masaya Anan ◽  
Makoto Takahashi ◽  
Koichi Shinkoda

2010 ◽  
Vol 26 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Jason Wicke ◽  
Genevieve A. Dumas

The geometric method combines a volume and a density function to estimate body segment parameters and has the best opportunity for developing the most accurate models. In the trunk, there are many different tissues that greatly differ in density (e.g., bone versus lung). Thus, the density function for the trunk must be particularly sensitive to capture this diversity, such that accurate inertial estimates are possible. Three different models were used to test this hypothesis by estimating trunk inertial parameters of 25 female and 24 male college-aged participants. The outcome of this study indicates that the inertial estimates for the upper and lower trunk are most sensitive to the volume function and not very sensitive to the density function. Although it appears that the uniform density function has a greater influence on inertial estimates in the lower trunk region than in the upper trunk region, this is likely due to the (overestimated) density value used. When geometric models are used to estimate body segment parameters, care must be taken in choosing a model that can accurately estimate segment volumes. Researchers wanting to develop accurate geometric models should focus on the volume function, especially in unique populations (e.g., pregnant or obese individuals).


Author(s):  
Jianping Yuan ◽  
Xianghao Hou ◽  
Chong Sun ◽  
Yu Cheng

Estimating the parameters of an unknown free-floating tumbling spacecraft is an essential task for the on-orbit servicing missions. This paper proposes a dual vector quaternion based fault-tolerant pose and inertial parameters estimation algorithm of an uncooperative space target using two formation flying small satellites. Firstly, by utilizing the dual vector quaternions to model the kinematics and dynamics of the system, not only the representation of the model is concise and compacted, but also the translational and rotational coupled effects are considered. By using this modeling technique along with the measurements from the on-board vision-based sensors, a dual vector quaternion based extended Kalman filter for each of the two small satellites is designed. Secondly, both of the estimations from each small satellite will be used as inputs of the fault-tolerant algorithm. This algorithm is based on the fault-tolerant federal extended Kalman filter strategy to overcome the estimation errors caused by the faulty measurements, the unknown space environment and the computing errors by setting the appropriate ratios of the two estimations from the first step dual vector quaternions extended Kalman filter. Together with the first and second steps, a novel fault-tolerant dual vector quaternions federal extended Kalman filter using two formation flying small satellites is proposed by this paper to estimate the pose and inertial parameters of a free-floating tumbling space target. By utilizing the estimation algorithm, a good prior knowledge of the unknown space target can be achieved. Finally, the proposed dual vector quaternion federal extended Kalman filter is validated by mathematical simulations to show its robust performances.


2007 ◽  
Vol 40 (3) ◽  
pp. 543-553 ◽  
Author(s):  
R. Dumas ◽  
L. Chèze ◽  
J.-P. Verriest

Author(s):  
Francy L. Sinatra ◽  
Stephanie L. Carey ◽  
Rajiv Dubey

Previous studies have been conducted to develop a biomechanical model for a human’s lower limb. Amongst them, there have been several studies trying to quantify the kinetics and kinematics of lower-limb amputees through motion analysis [5, 10, 11]. Currently, there are various designs for lower-limb prosthetic feet such as the Solid Ankle Cushion Heel (SACH) from Otto Bock (Minneapolis) or the Flex Foot from Ossur (California). The latter is a prosthetic foot that allows for flexibility while walking and running. Special interest has been placed in recording the capabilities of these energy-storing prosthetic feet. This has been done through the creation of biomechanical models with motion analysis. In these previous studies the foot has been modeled as a single rigid-body segment, creating difficulties when trying to calculate the power dissipated by the foot [5, 20, 21]. This project studies prosthetic feet with energy-storing capabilities. The purpose is to develop an effective way of calculating power by using a biomechanical model. This was accomplished by collecting biomechanical data using an eight camera VICON (Colorado) motion analysis system including two AMTI (BP-400600, Massachusetts) force plates. The marker set that was used, models the foot using several segments, hence mimicking the motion the foot undergoes and potentially leading to greater accuracy. By developing this new marker set, it will be possible to combine the kinematic and kinetic profile gathered from it with previous studies that determined metabolic information. This information will allow for the better quantification and comparison of the energy storage and return (ES AR) feet and perhaps the development of new designs.


2015 ◽  
Vol 18 (sup1) ◽  
pp. 2010-2011 ◽  
Author(s):  
A. Muller ◽  
C. Germain ◽  
C. Pontonnier ◽  
G. Dumont

Sign in / Sign up

Export Citation Format

Share Document