Disorder dependence electron phonon scattering rate of V 82 Pd 18−x Fe x alloys at low temperature

2018 ◽  
Vol 382 (14) ◽  
pp. 984-990 ◽  
Author(s):  
R.N. Jana ◽  
A.K. Meikap
1997 ◽  
Vol 12 (3) ◽  
pp. 296-299 ◽  
Author(s):  
Zheng Yisong ◽  
Lu Tianquan ◽  
Wang Yiding ◽  
Wu Xuhong ◽  
Zhang Chengxiang ◽  
...  

1975 ◽  
Vol 19 (1-4) ◽  
pp. 49-50 ◽  
Author(s):  
V. F. Gantmakher ◽  
V. A. Gasparov

Author(s):  
A. Bulusu ◽  
D. G. Walker

As electronic device dimensions shrink down to the nanoscale regime, quantum effects such as electron tunneling and quantum confinement become significant. Along with quantum effects, various scattering processes such as carrier-carrier and carrier-defect scattering will influence device performance. Many transport models are not mature enough to couple the thermal effects with electronic solutions at such small scales. Incorporation of strong scattering influences on the electron transport in most cases is extremely difficult and computationally intensive. In this paper, we study a simple model that allows for integration of electron-phonon scattering effects in a nanotransistor. An acoustic deformation potential based electron-phonon scattering model is used to incorporate scattering in the device. A 7.5% drop in channel current was observed for a scattering rate of 1013/sec while current flow dropped by 50% for higher scattering rates. The effective channel resistance due to scattering was found to increase by a factor of 1.3. The results are compared to the I-V characteristics obtained using the non-equilibrium Green’s function (NEGF) formalism and were found to match well. The effect of phase-breaking scattering was also studied using NEGF where a 25% decrease in channel current was obtained thus demonstrating the importance of including scattering effects with quantum transport.


Sign in / Sign up

Export Citation Format

Share Document