Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology
Latest Publications


TOTAL DOCUMENTS

77
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Published By ASMEDC

0791847071

Author(s):  
Shubhada Sahasrabudhe ◽  
Vinayak Pandey ◽  
Betty Phillips ◽  
Kang Joon Lee ◽  
Lei Mercado

For handheld electronic applications such as cell phones and Personal Digital Assistants (PDAs), drop/impact could result in considerable flexure of the printed circuit board (PCB) mounted inside the cell phone housing. The mechanical stresses may cause electrical failure of the components, with typical failure mechanisms of board trace cracking, solder joint fatigue, and solder pad cracking. A standardized test needs to be developed to assess reliability of handheld components subjected to impacts. The test should facilitate high volume testing, maximize margin for safety factors, and capture the failure mechanisms in the field environment. To develop the reliability test using use conditions based reliability methodology, comprehensive characterization of the mechanical field stresses during end use conditions is particularly essential. This paper discusses complete cell phone drop characterization along with the shock test developed to test the components subjected to such drops. Novel fixtures have been designed to simulate free fall of the cell phone in specific orientations. After the complete characterization of cell phone use conditions, board level shock test has been selected to assess component reliability. Test repeatability, number of components on the test board, and layout of the components are some of the factors considered during the board level shock test development. Several parameters like screw and washer designs, torque have been studied to yield excellent test repeatability. Nonlinear Dynamic Finite Element Simulation has been performed to provide more insight into the interaction of the bending modes and its impact on the solder joint failures. This paper demonstrates the process of understanding use conditions, developing reliability tests, validating test results and driving industry standards.



Author(s):  
Changsoo Jang ◽  
Seongyoung Han ◽  
Jay Ryu ◽  
Hangyu Kim

Some of the current assembly issues of fine pitch chip-on-flex (COF) packages for LCD applications are reviewed. Traditional underfill material, anisotropic conductive adhesive (ACA) and non-conductive adhesive (NCA) are considered in conjunction with two applicable bonding methods including thermal and laser bonding. Advantages and disadvantages of each material/process combination are identified. Their applicability is further investigated to identify a process most suitable to the fine pitch packages (less than 40 μm). Numerical results and subsequent testing results indicate that NCA/laser bonding process produces most reliable joint for the fine pitch packages.



Author(s):  
Qiang Yu ◽  
Masaki Shiratori ◽  
Kimimasa Murayama ◽  
Kazuhiro Igarashi ◽  
Takashi Nakanishi

In recent years many electric equipments have come to be used for cars. Solder joints in electric device utilizing car are exposed to harder environment and required higher reliability than that in electric household appliances. Because of this reason, thermal fatigue reliability of solder joints has become one of the most important issues in car electronics. Generally thermal fatigue reliability is estimated by thermal cycle examination, but it needs long time. Estimation by FEM enables it to improve reliability and to reduce time. Analysis of solder life generally can predict only initial crack. But it is important to predict crack propagation and solder joints break down, considering that a function of solder joints is electric connection. In this study, the authors proposed a method to predict break down life by analytical approach.



Author(s):  
T. W. Lin ◽  
M. C. Wu ◽  
C. H. Peng ◽  
P. L. Chen ◽  
Y. H. Hung

In the present study, an experimental setup with stringent measurement methods for performing the natural convection from a horizontal heated chip mounted with a silicon heat spreader coated with diamond film has been successfully established. The parametric studies on the local and average effective heat transfer characteristics for natural convection from a horizontal smooth silicon wafer, rough silicon wafer or silicon wafer coated with diamond film spreader have been explored. The influencing parameters and conditions include Grashof number and spreader material with different surface treatment conditions. From the results, an axisymmetric bowl-shaped Nu profile is achieved, and the highest heat transfer performance occurs at the location near the rim of the heated surfaces for various heat spreaders. The local Nusselt number for a specified convective heat flux decreases along the distance from the disk rim toward the center. The local or average Nusselt number increases with increasing Grashof number for various heat spreaders. As compared with the average Nusselt number for smooth water surface (Ra=5.69nm), the heat transfer enhancements for rough silicon surface (Ra=516.61nm) and rough diamond surface (Ra=319.51nm) are 10.42% and 7.69%, respectively. Furthermore, new correlations for local and average Nusselt numbers for various heat spreaders are presented, respectively. As compared with the smooth silicon surface, the external thermal resistance for rough silicon surface and rough diamond surface are reduced to 91.18% and 90.73%, respectively; and the maximum thermal resistances for rough silicon wafer and silicon wafer coated with diamond film are reduced to 90.43% and 92.61%, respectively.



Author(s):  
Xiulin Ruan ◽  
Massoud Kaviany

The luminescence quenching of a random, crystalline one-dimensional model porous medium doped with rare-earth elements, is analyzed by considering the transport, transition, and interaction of the fundamental energy carriers. The quenching in nano porous media is enhanced compared to a single crystal, due to multiple scattering, enhanced absorption, and low thermal conductivity. The coherent wave treatment is used to calculate the photon absorption, in order to allow for field interference and enhancement. The luminescent and thermal emission is considered as incoherent. The luminescence quenching and non-linear thermal emission, occurring with increasing irradiation intensity, are predicted.



Author(s):  
Dein Shaw ◽  
H. C. Lin

In this study, the tension force distributions in the film of COF cartridge are studied. It is noted that if the tension force on the film is too high, the interface between chip and film cracked. If the force is too low, there is no enough friction force to keep the COF in fix position when the cartridge is on the transportation vehicle. The relative motion between the chips of lower layer and the film of upper layer will cause the fatigue of interface of chips and film. It is also important to note that due to the friction the tension force at any section of the film is different. To fine the force distribution, a method to determine the tension force is developed and only effect of axial direction is considered. The assumption makes the film behave like a string. The results show that the forces on the film are different whenever the film passes a chip underneath.



Author(s):  
S. Radhakrishnan ◽  
G. Subbarayan ◽  
L. Nguyen ◽  
W. Mazotti

There is considerable uncertainty in the prediction of performance of a system mainly due to idealizations in geometry, material behavior, and loading history. Uncertainties in geometry can be predicted and controlled using tighter tolerances. However, the models currently used to describe material behavior are mostly deterministic. To predict the coupling efficiency of a photonic system to greater degree of confidence, stochastic analysis procedures are necessary. As part of this analysis, the behavior of materials must be stochastically characterized. In this paper, we present extensive experimental data on thermally and UV-cured epoxies typically used in photonic packages to enable stochastic analysis. The test data includes the viscoelastic behavior. We present analytical model to obtain the variation in the displacement of the epoxies resulting from its stochastic viscoelastic behavior. We utilize the analytical model to predict the uncertainty in the coupling efficiency of a generic photonic package.



Author(s):  
Jiantao Zheng ◽  
Suresh K. Sitaraman

Knowledge of the mode-mixity (?) dependent interfacial fracture toughness (Γ) is needed to predict the interface delamination and the component reliability of thin-film structures. Mode-mixity, ?, is a measure of the relative shearing to tensile opening of the interface crack near the tip. Typically, Γ increases as ? increases, such that the delamination is less likely when the loading on the interface is shear-dominated. The measurement of mode-mixity dependent Γ has been a challenge for thin film interfaces. The single-strip superlayer test, developed by the authors, eliminates the shortcomings of current testing methods. This test employs a stress-engineered superlayer to drive the interfacial delamination between the thin-film and the substrate. An innovative aspect of the proposed test is to introduce a release layer of varying width between the interested interfaces to control the amount of energy available for delamination propagation. By designing a decreasing area of the release layer, it is possible to arrest the interfacial delamination at a given location, and the interfacial fracture toughness or critical energy release rate can be found at the location where the delamination ceases to propagate. Design, preparation, and execution of the test are presented. Results are shown for Ti/Si interfaces of different mode mixities.



Author(s):  
Hyung Woo Lee ◽  
Soon Geun Kwon ◽  
Soo Hyun Kim ◽  
Yoon Keun Kwak ◽  
Chang Soo Han

We report a simple, low cost, reliable technique of making carbon nanotube (CNT) modified atomic force microscopy (AFM) tip. We used the dielectrophoresis and the electrophoresis to align and deposit carbon nanotubes on the end of the AFM tip. From the simulation and the various experiments, we obtained the optimal electric condition, 0.32Vpp/μm. Also, we found that the blunt shape of the tip’s apex is more effective than sharpened one. Through the experiments, we verified that the blunt shape is more effective over 50% than the sharpened one in the attachment of CNTs. By comparing the scanning results between the CNT modified tip and a normal AFM tip, we obtained the improvement in efficiency of 23%.



Author(s):  
Ronald Hon ◽  
Shawn X. D. Zhang ◽  
S. W. Ricky Lee

The focus of this study is on the fabrication of through silicon vias (TSV) for three dimensional packaging. According to IPC-6016, the definition of microvias is a hole with a diameter of less than or equal to 150 μm. In order to meet this requirement, laser drilling and deep reactive ion etching (but not wet etching) are used to make the microvias. Comparisons between these two different methods are carried out in terms of wall straightness, smoothness, smallest via produced and time needed for fabrication. In addition, discussion on wafer thinning for making through silicon microvias is given as well.



Sign in / Sign up

Export Citation Format

Share Document