Comment to the paper I. Papp et al.: Laser wake field collider [Phys. Lett. A 396 (2021) 127245]

2021 ◽  
pp. 127845
Author(s):  
István B. Földes ◽  
Vladimir T. Tikhonchuk
Keyword(s):  
1999 ◽  
Author(s):  
J. L. Hirshfield ◽  
S. Y. Park ◽  
T.-B. Zhang
Keyword(s):  

2008 ◽  
Vol 32 (10) ◽  
pp. 842-845
Author(s):  
Zhang Kai-Zhi ◽  
Zhang Huang ◽  
Long Ji-Dong ◽  
Yang Guo-Jun ◽  
He Xiao-Zhong ◽  
...  

2021 ◽  
Author(s):  
Davide Conti ◽  
Nikolay Dimitrov ◽  
Alfredo Peña ◽  
Thomas Herges

Abstract. In this first part of a two-part work, we study the calibration of the Dynamic Wake Meandering (DWM) model using high spatial and temporal resolution SpinnerLidar measurements of the wake field collected at the Scaled Wind Farm Technology (SWiFT) facility located in Lubbock, Texas, U.S.A. We derive two-dimensional wake flow characteristics including wake deficit, wake turbulence and wake meandering from the lidar observations under different atmospheric stability conditions, inflow wind speeds and downstream distances up to five rotor diameters. We then apply Bayesian inference to obtain a probabilistic calibration of the DWM model, where the resulting joint distribution of parameters allows both for model implementation and uncertainty assessment. We validate the resulting fully-resolved wake field predictions against the lidar measurements and discuss the most critical sources of uncertainty. The results indicate that the DWM model can accurately predict the mean wind velocity and turbulence fields in the far wake region beyond four rotor diameters, as long as properly-calibrated parameters are used and wake meandering time series are accurately replicated. We demonstrate that the current DWM-model parameters in the IEC standard lead to conservative wake deficit predictions. Finally, we provide practical recommendations for reliable calibration procedures.


2016 ◽  
Author(s):  
Juan-José Trujillo ◽  
Janna K. Seifert ◽  
Ines Würth ◽  
David Schlipf ◽  
Martin Kühn

Abstract. Presently there is a lack of data revealing the behaviour of the path followed by the near wake of full scale wind turbines and its dependence on yaw misalignment. Here we present an experimental analysis of the horizontal wake deviation of a 5 MW offshore wind turbine between 0.6 and 1.4 diameters downstream. The wake field has been scanned with a short range lidar and the wake path has been reconstructed by means of two-dimensional Gaussian tracking. We analysed the measurements for rotor yaw misalignments arising in normal operation and during partial load, representing high thrust coefficient conditions. We classified distinctive wake paths with reference to yaw misalignment, based on the nacelle wind vane, in steps of 3° in a range of ±10.5°. All paths observed in the nacelle frame of reference showed a consistent convergence towards 0.9 rotor diameters downstream suggesting a kind of wake deviation delay. This contrasts with published results from wind tunnels which in general report a convergence towards the rotor. The discrepancy is evidenced in particular in a comparison which we performed against published paths obtained by means of tip vortex tracking.


Sign in / Sign up

Export Citation Format

Share Document