Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds.

Plant Science ◽  
2010 ◽  
Vol 178 (6) ◽  
pp. 501-509 ◽  
Author(s):  
Cécile Petit ◽  
Bastien Duhieu ◽  
Karelle Boucansaud ◽  
Christophe Délye
2016 ◽  
Vol 56 (4) ◽  
pp. 402-410 ◽  
Author(s):  
Kazimierz Adamczewski ◽  
Roman Kierzek ◽  
Kinga Matysiak

AbstractAlopecurus myosuroides seeds were sampled from 32 winter wheat fields from 2010 to 2014. Resistance to herbicides was detected in 17 A. myosuroides populations. In addition to single resistance to herbicides, cross-resistance and multiple resistance to acetolactate synthase (ALS)- and acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides were found. Application of sulfometuron and imazapyr was unable to control some of the resistant biotypes in this study. This result implies that resistance in these populations is due to a target site mechanism. The A. myosuroides biotypes resistant to ACCase-inhibiting herbicides varied in their responses to derivatives of aryloxy-phenoxy-propionic acid (FOPs), cyclohexanediones (DIMs) and phenylpyrazolines (DENs). Resistant biotypes of A. myosuroides that could not be controlled with fenoxaprop-P-ethyl (FOP) and pinoxaden (DEN) were controlled with clethodim (DIM).


Weed Science ◽  
2005 ◽  
Vol 53 (5) ◽  
pp. 728-746 ◽  
Author(s):  
Christophe Délye

Herbicides targeting grass plastidic acetyl coenzyme A carboxylase (ACC) are effective selective graminicides. Their intensive use worldwide has selected for resistance genes in a number of grass weed species. Biochemistry and molecular biology have been the means of determining the herbicidal activity and selectivity toward crop plants of ACC-inhibiting herbicides. In recent years, elucidation of the tridimensional structure of ACC and identification of five amino acid residues within the ACC carboxyl transferase domain that are critical determinants for herbicide sensitivity shed light on the basis of ACC-based resistance to herbicides. However, metabolism-based resistance to ACC-inhibiting herbicides is much less well known, although this type of resistance seems to be widespread. A number of genes thus endow resistance to ACC-inhibiting herbicides, with the possibility for various resistance genes that confer dominant resistance at the herbicide field rate to accumulate within a single weed population or plant. This, together with a poor knowledge of the genetic parameters driving resistance, renders the evolution of resistance to ACC-inhibiting herbicides unpredictable. Future research should consider developing tactics to slow the spread of resistance. For this purpose, it is crucial that our understanding of metabolism-based resistance improves rapidly because this mechanism is complex and can confer resistance to herbicides with different target sites.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 588-595 ◽  
Author(s):  
Alice A. Wright ◽  
Vijay K. Nandula ◽  
Logan Grier ◽  
Kurt C. Showmaker ◽  
Jason A. Bond ◽  
...  

A population of junglerice from Sunflower County, MS, exhibited resistance to fenoxaprop-P-ethyl. An 11-fold difference in ED50 (the effective dose needed to reduce growth by 50%) values was observed when comparing the resistant population (249 g ae ha–1) with susceptible plants (20 g ae ha–1) collected from a different field. The resistant population was controlled by clethodim and sethoxydim at the field rate. Sequencing of the acetyl coenzyme A carboxylase, which encodes the enzyme targeted by fenoxaprop-P-ethyl, did not reveal the presence of any known resistance-conferring point mutations. An enzyme assay confirmed that the acetyl coenzyme A carboxylase in the resistant population is herbicide sensitive. Further investigations with two cytochrome P450 inhibitors, malathion and piperonyl butoxide, and a glutathione-S-transferase inhibitor, 4-chloro-7-nitrobenzofurazan, did not indicate involvement of any metabolic enzymes inhibited by these compounds. The absence of a known target-site point mutation and the sensitivity of the ACCase enzyme to herbicide show that fenoxaprop-P-ethyl resistance in this population is due to a non–target-site mechanism or mechanisms.


Sign in / Sign up

Export Citation Format

Share Document