scholarly journals Multiple resistance to acetolactate synthase (ALS)- and acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds.) populations from Poland

2016 ◽  
Vol 56 (4) ◽  
pp. 402-410 ◽  
Author(s):  
Kazimierz Adamczewski ◽  
Roman Kierzek ◽  
Kinga Matysiak

AbstractAlopecurus myosuroides seeds were sampled from 32 winter wheat fields from 2010 to 2014. Resistance to herbicides was detected in 17 A. myosuroides populations. In addition to single resistance to herbicides, cross-resistance and multiple resistance to acetolactate synthase (ALS)- and acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides were found. Application of sulfometuron and imazapyr was unable to control some of the resistant biotypes in this study. This result implies that resistance in these populations is due to a target site mechanism. The A. myosuroides biotypes resistant to ACCase-inhibiting herbicides varied in their responses to derivatives of aryloxy-phenoxy-propionic acid (FOPs), cyclohexanediones (DIMs) and phenylpyrazolines (DENs). Resistant biotypes of A. myosuroides that could not be controlled with fenoxaprop-P-ethyl (FOP) and pinoxaden (DEN) were controlled with clethodim (DIM).

Weed Science ◽  
2005 ◽  
Vol 53 (5) ◽  
pp. 728-746 ◽  
Author(s):  
Christophe Délye

Herbicides targeting grass plastidic acetyl coenzyme A carboxylase (ACC) are effective selective graminicides. Their intensive use worldwide has selected for resistance genes in a number of grass weed species. Biochemistry and molecular biology have been the means of determining the herbicidal activity and selectivity toward crop plants of ACC-inhibiting herbicides. In recent years, elucidation of the tridimensional structure of ACC and identification of five amino acid residues within the ACC carboxyl transferase domain that are critical determinants for herbicide sensitivity shed light on the basis of ACC-based resistance to herbicides. However, metabolism-based resistance to ACC-inhibiting herbicides is much less well known, although this type of resistance seems to be widespread. A number of genes thus endow resistance to ACC-inhibiting herbicides, with the possibility for various resistance genes that confer dominant resistance at the herbicide field rate to accumulate within a single weed population or plant. This, together with a poor knowledge of the genetic parameters driving resistance, renders the evolution of resistance to ACC-inhibiting herbicides unpredictable. Future research should consider developing tactics to slow the spread of resistance. For this purpose, it is crucial that our understanding of metabolism-based resistance improves rapidly because this mechanism is complex and can confer resistance to herbicides with different target sites.


1997 ◽  
Vol 11 (3) ◽  
pp. 598-601 ◽  
Author(s):  
Mark J. Vangessel ◽  
Quintin Johnson ◽  
Mark Isaacs

This research was designed to determine if sethoxydim-resistant corn hybrids exhibited levels of cross-resistance to other acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides. Three sethoxydim-resistant hybrids were tested in 1995 and four in 1996. The hybrids were treated with the 1 × (labeled use rate for annual grass control) and 4 × rate of clethodim, fenoxaprop-P plus fluazifop-P, fluazifop-P, quizalofop-P, and sethoxydim. At the 1 × rate, similar levels of corn safety were observed in both years with sethoxydim, quizalofop-P (except Asgrow RX620SR in 1995), and in 1996, fenoxaprop-P plus fluazifop-P. Corn treated with the 4 × rate of sethoxydim did not exhibit injury, while all other ACCase-inhibiting herbicides cause > 50% corn injury. Sethoxydim-resistant com hybrids used in this study did not consistently exhibit acceptable levels of cross-resistance to other ACCase-inhibiting herbicides. The use of clethodim will control volunteer sethoxydim-resistant corn in rotational crops.


Sign in / Sign up

Export Citation Format

Share Document