The influence of ascorbic acid on root growth and the root apical meristem in Arabidopsis thaliana

2018 ◽  
Vol 129 ◽  
pp. 323-330 ◽  
Author(s):  
Noura Kka ◽  
James Rookes ◽  
David Cahill
2021 ◽  
Vol 22 (11) ◽  
pp. 5739
Author(s):  
Joo Yeol Kim ◽  
Hyo-Jun Lee ◽  
Jin A Kim ◽  
Mi-Jeong Jeong

Sound waves affect plants at the biochemical, physical, and genetic levels. However, the mechanisms by which plants respond to sound waves are largely unknown. Therefore, the aim of this study was to examine the effect of sound waves on Arabidopsis thaliana growth. The results of the study showed that Arabidopsis seeds exposed to sound waves (100 and 100 + 9k Hz) for 15 h per day for 3 day had significantly longer root growth than that in the control group. The root length and cell number in the root apical meristem were significantly affected by sound waves. Furthermore, genes involved in cell division were upregulated in seedlings exposed to sound waves. Root development was affected by the concentration and activity of some phytohormones, including cytokinin and auxin. Analysis of the expression levels of genes regulating cytokinin and auxin biosynthesis and signaling showed that cytokinin and ethylene signaling genes were downregulated, while auxin signaling and biosynthesis genes were upregulated in Arabidopsis exposed to sound waves. Additionally, the cytokinin and auxin concentrations of the roots of Arabidopsis plants increased and decreased, respectively, after exposure to sound waves. Our findings suggest that sound waves are potential agricultural tools for improving crop growth performance.


Planta ◽  
2011 ◽  
Vol 234 (6) ◽  
pp. 1163-1177 ◽  
Author(s):  
Alejandra Hernández-Barrera ◽  
Yamel Ugartechea-Chirino ◽  
Svetlana Shishkova ◽  
Selene Napsucialy-Mendivil ◽  
Aleš Soukup ◽  
...  

Development ◽  
1992 ◽  
Vol 116 (2) ◽  
pp. 397-403 ◽  
Author(s):  
H. M. Ottoline Leyser ◽  
I. J. Furner

The shoot apical meristem of dicotyledonous plants is highly regulated both structurally and functionally, but little is known about the mechanisms involved in this regulation. Here we describe the genetic and phenotypic characterisation of recessive mutations at three loci of Arabidopsis thaliana in which meristem structure and function are disrupted. The loci are Clavata1 (Clv1), Fasciata1 (Fas1) and Fasciata2 (Fas2). Plants mutant at these loci are fasciated having broad, flat stems and disrupted phyllotaxy. In all cases, the fasciations are associated with shoot apical meristem enlargement and altered floral development. While all the mutants share some phenotypic features they can be divided into two classes. The pleiotropic fas1 and fas2 mutants are unable to initiate wild- type organs, show major alterations in meristem structure and have reduced root growth. In contrast, clv1 mutant plants show near wild-type organ phenotypes, more subtle changes in shoot apical meristem structure and wild-type root growth.


Author(s):  
Joseph G Dubrovsky ◽  
Kris Vissenberg

Abstract This special issue is dedicated to the 100th anniversary of the birth of Frederick Albert Lionel Clowes, who discovered the quiescent centre (QC) of the root apical meristem (RAM). His discovery was a foundation for contemporary studies of the QC and RAM function, maintenance, and organization. RAM function is fundamental for cell production and root growth. This special issue bundles reviews on the main tendencies, hypotheses, and future directions, and identifies unknowns in the field.


2020 ◽  
Vol 190 ◽  
pp. 111313
Author(s):  
Annika Wein ◽  
Anne-Laure Le Gac ◽  
Thomas Laux

1997 ◽  
Vol 110 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Ritsuko Koitabashi ◽  
Takeshi Suzuki ◽  
Tamotsu Kawazu ◽  
Atsushi Sakai ◽  
Haruko Kuroiwa ◽  
...  

2020 ◽  
Author(s):  
Laryssa Halat ◽  
Katherine Gyte ◽  
Geoffrey Wasteneys

ABSTRACTThe ability for plant growth to be optimized, either in the light or dark, depends on the intricate balance between cell division and differentiation in specialized regions called meristems. When Arabidopsis thaliana seedlings are grown in the dark, hypocotyl elongation is promoted, whereas root growth is greatly reduced as a result of changes in hormone transport and a reduction in meristematic cell proliferation. Previous work showed that the microtubule-associated protein CLASP sustains root apical meristem (RAM) size by influencing microtubule (MT) organization and by modulating the brassinosteroid (BR) signalling pathway. Here, we investigated whether CLASP is involved in light-dependent root growth promotion, since dark-grown seedlings have reduced RAM activity that is observed in the clasp-1 null mutant. We showed that CLASP protein levels were greatly reduced in the root tips of dark-grown seedlings, which could be reversed by exposing plants to light. We confirmed that removing seedlings from the light led to a discernible shift in MT organization from bundled arrays, which are prominent in dividing cells, to transverse orientations typically observed in cells that have exited the meristem. BR receptors and auxin transporters, both of which are sustained by CLASP, were largely degraded in the dark. Interestingly, we found that despite the lack of protein, CLASP transcript levels were higher in dark-grown root tips. Together, these findings uncover a mechanism that sustains meristem homeostasis through CLASP, and advances our understanding of how roots modulate their growth according to the amount of light and nutrients perceived by the plant.One Sentence SummaryThe microtubule-associated protein CLASP is regulated at the translational level when root meristem growth is inhibited in dark-grown plants.


Sign in / Sign up

Export Citation Format

Share Document