scholarly journals A machine-learning based approach to privacy-aware information-sharing in mobile social networks

2016 ◽  
Vol 25 ◽  
pp. 125-142 ◽  
Author(s):  
Igor Bilogrevic ◽  
Kévin Huguenin ◽  
Berker Agir ◽  
Murtuza Jadliwala ◽  
Maria Gazaki ◽  
...  
2017 ◽  
Vol 7 (1.3) ◽  
pp. 61
Author(s):  
M. Sangeetha ◽  
S. Nithyanantham ◽  
M. Jayanthi

Online Social Networks(OSNs) have mutual themes such as information sharing, person-to-person interaction and creation of shared and collaborative content.  Lots of micro blogging websites available like Twitter, Instagram, Tumblr. A standout amongst the most prominent online networking stages is Twitter. It has 313 million months to month dynamic clients which post of 500 million tweets for each day. Twitter allows users to send short text based messages with up to 140-character letters called "tweets". Enlisted clients can read and post tweets however the individuals who are unregistered can just read them. Due to the reputation it attracts the consideration of spammers for their vindictive points, for example, phishing true blue clients or spreading malevolent programming and promotes through URLs shared inside tweets, forcefully take after/unfollow valid clients and commandeer drifting subjects to draw in their consideration, proliferating obscenity. Twitter Spam has become a critical problem nowadays. By looking at the execution of an extensive variety of standard machine learning calculations, fundamentally expecting to distinguish the acceptable location execution in light of a lot of information by utilizing account-based and tweet content-based highlights.


2014 ◽  
Vol 36 (3) ◽  
pp. 613-625 ◽  
Author(s):  
Hai-Yang HU ◽  
Zhong-Jin LI ◽  
Hua HU ◽  
Ge-Hua ZHAO

Author(s):  
Seyyed Mohammad Safi ◽  
Ali Movaghar ◽  
Komeil Safikhani Mahmoodzadeh

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3994
Author(s):  
Yuxi Li ◽  
Fucai Zhou ◽  
Yue Ge ◽  
Zifeng Xu

Focusing on the diversified demands of location privacy in mobile social networks (MSNs), we propose a privacy-enhancing k-nearest neighbors search scheme over MSNs. First, we construct a dual-server architecture that incorporates location privacy and fine-grained access control. Under the above architecture, we design a lightweight location encryption algorithm to achieve a minimal cost to the user. We also propose a location re-encryption protocol and an encrypted location search protocol based on secure multi-party computation and homomorphic encryption mechanism, which achieve accurate and secure k-nearest friends retrieval. Moreover, to satisfy fine-grained access control requirements, we propose a dynamic friends management mechanism based on public-key broadcast encryption. It enables users to grant/revoke others’ search right without updating their friends’ keys, realizing constant-time authentication. Security analysis shows that the proposed scheme satisfies adaptive L-semantic security and revocation security under a random oracle model. In terms of performance, compared with the related works with single server architecture, the proposed scheme reduces the leakage of the location information, search pattern and the user–server communication cost. Our results show that a decentralized and end-to-end encrypted k-nearest neighbors search over MSNs is not only possible in theory, but also feasible in real-world MSNs collaboration deployment with resource-constrained mobile devices and highly iterative location update demands.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Randa Aljably ◽  
Yuan Tian ◽  
Mznah Al-Rodhaan

Nowadays, user’s privacy is a critical matter in multimedia social networks. However, traditional machine learning anomaly detection techniques that rely on user’s log files and behavioral patterns are not sufficient to preserve it. Hence, the social network security should have multiple security measures to take into account additional information to protect user’s data. More precisely, access control models could complement machine learning algorithms in the process of privacy preservation. The models could use further information derived from the user’s profiles to detect anomalous users. In this paper, we implement a privacy preservation algorithm that incorporates supervised and unsupervised machine learning anomaly detection techniques with access control models. Due to the rich and fine-grained policies, our control model continuously updates the list of attributes used to classify users. It has been successfully tested on real datasets, with over 95% accuracy using Bayesian classifier, and 95.53% on receiver operating characteristic curve using deep neural networks and long short-term memory recurrent neural network classifiers. Experimental results show that this approach outperforms other detection techniques such as support vector machine, isolation forest, principal component analysis, and Kolmogorov–Smirnov test.


Sign in / Sign up

Export Citation Format

Share Document