Triple-shape memory effect of long-chain branched Poly(lactic acid)-b-poly(lactide-co-caprolactone) and its controllable shape recovery as self-fastening smart bone fixture

Polymer ◽  
2021 ◽  
pp. 124421
Author(s):  
Xiaowen Zhao ◽  
Yalong Liu ◽  
Phil Coates ◽  
Fin Caton-Rose ◽  
Lin Ye
2021 ◽  
Vol 22 (11) ◽  
pp. 5892
Author(s):  
Axel T. Neffe ◽  
Candy Löwenberg ◽  
Konstanze K. Julich-Gruner ◽  
Marc Behl ◽  
Andreas Lendlein

Shape-memory hydrogels (SMH) are multifunctional, actively-moving polymers of interest in biomedicine. In loosely crosslinked polymer networks, gelatin chains may form triple helices, which can act as temporary net points in SMH, depending on the presence of salts. Here, we show programming and initiation of the shape-memory effect of such networks based on a thermomechanical process compatible with the physiological environment. The SMH were synthesized by reaction of glycidylmethacrylated gelatin with oligo(ethylene glycol) (OEG) α,ω-dithiols of varying crosslinker length and amount. Triple helicalization of gelatin chains is shown directly by wide-angle X-ray scattering and indirectly via the mechanical behavior at different temperatures. The ability to form triple helices increased with the molar mass of the crosslinker. Hydrogels had storage moduli of 0.27–23 kPa and Young’s moduli of 215–360 kPa at 4 °C. The hydrogels were hydrolytically degradable, with full degradation to water-soluble products within one week at 37 °C and pH = 7.4. A thermally-induced shape-memory effect is demonstrated in bending as well as in compression tests, in which shape recovery with excellent shape-recovery rates Rr close to 100% were observed. In the future, the material presented here could be applied, e.g., as self-anchoring devices mechanically resembling the extracellular matrix.


2020 ◽  
Vol 14 (12) ◽  
pp. 1116-1126
Author(s):  
L. Dai ◽  
J. Song ◽  
S. Qu ◽  
R. Xiao

2014 ◽  
Vol 936 ◽  
pp. 140-144 ◽  
Author(s):  
Jia Ying ◽  
Masaaki Nishikawa ◽  
Masaki Hojo

The relationship of annealing and shape memory effect of uniaxially oriented shape memory polyurethane was studied; meanwhile a new method of adjusting shape recovery ratio by annealing was proposed for further consideration. Experiments were designed to compare the influence on length change from annealing and shape memory effect with shape memory polyurethane film at 65°C. We found that for shape memory polyurethane which had residual strain from material processing procedure, annealing and shape memory effect have the same effect on its length change if they are both carried out at the same temperature. It is because annealing and shape memory effect have the same mechanism, which is the change of state from low conformational entropy states to the recovery of a stable high entropy state in the polymer. Moreover, it is proved by experiment that shape recovery ratio of shape memory polyurethane can be adjusted by annealing.


2011 ◽  
Vol 33 (3) ◽  
pp. 225-231 ◽  
Author(s):  
Yanjiao Han ◽  
Tao Bai ◽  
Yuan Liu ◽  
Xinyun Zhai ◽  
Wenguang Liu

2016 ◽  
Vol 52 (90) ◽  
pp. 13292-13295 ◽  
Author(s):  
He Xiao ◽  
Wei Lu ◽  
Xiaoxia Le ◽  
Chunxin Ma ◽  
Zhaowen Li ◽  
...  

A novel multi-responsive shape memory hydrogel is described.


2004 ◽  
Vol 449-452 ◽  
pp. 1273-1276 ◽  
Author(s):  
Masahiko Ikeda ◽  
S. Komatsu ◽  
Yuichiro Nakamura ◽  
Y. Kobayashi

Using Ti-40mass%Ta-0, -4, -8 and -12mass%Sn alloys, the effect of Sn addition on phase constitution in the solution treated and quenched state and isochronal heat treatment behavior is studied by electrical resistivity and Vickers hardness measurements and X-ray diffactometry. To confirm shape memory effect of some of these alloys, shape-recovery test was also performed. Orthorhombic martensite, ” was identified in Ti-40Sn-0 to 8Sn alloy quenched from 1173K, while phase was identified in STQed Ti-40Ta-12Sn alloy. On isochronal heat treatment, increases of resistivity at LN and resistivity ratio were observed in only 8Sn alloy, because these increases are due to reverse-transformation of ” to phase. From result of shape recovery test, shape memory effect was observed in Ti-40Ta-4 and 8Sn alloys


Soft Matter ◽  
2012 ◽  
Vol 8 (18) ◽  
pp. 4928 ◽  
Author(s):  
José M. Cuevas ◽  
Raquel Rubio ◽  
Lorena Germán ◽  
José M. Laza ◽  
José L. Vilas ◽  
...  

2014 ◽  
Vol 47 (19) ◽  
pp. 6791-6803 ◽  
Author(s):  
Cédric Samuel ◽  
Sophie Barrau ◽  
Jean-Marc Lefebvre ◽  
Jean-Marie Raquez ◽  
Philippe Dubois

2010 ◽  
Vol 654-656 ◽  
pp. 2150-2153 ◽  
Author(s):  
Hideki Hosoda ◽  
Makoto Taniguchi ◽  
Tomonari Inamura ◽  
Hiroyasu Kanetaka ◽  
Shuichi Miyazaki

Effects of single- and multi-step aging on mechanical properties and shape memory properties of Ti-6Mo-8Al (mol%) biomedical shape memory alloy were studied using tensile tests at room temperature (RT). The solution-treated alloy at RT was two phase of bcc β and martensite α". Tensile tests revealed that the solution-treated alloy exhibited good shape memory effect. As for the single-step aging, (1) pseudoelastic shape recovery by unloading was observed after aging at 623K, (2) the alloy became brittle after aging at 773K due to ω embrittlement, and (3) strength was improved with small shape memory effect by aging at 1023K. On the other hand, after a multistep aging at 773K-1023K-1123K, the alloy was strengthened and showed perfect shape recovery. The improvement must be achieved by the formation of fine and uniform hcp α precipitates.


Sign in / Sign up

Export Citation Format

Share Document