Enzymatic activities and gene expression of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase in persimmon fruit

2005 ◽  
Vol 37 (3) ◽  
pp. 286-290 ◽  
Author(s):  
Qiao-Lin Zheng ◽  
Akira Nakatsuka ◽  
Satoshi Taira ◽  
Hiroyuki Itamura
2021 ◽  
Author(s):  
Mitsutoshi Okamoto ◽  
Tomoko Niki ◽  
Mirai Azuma ◽  
Kenichi Shibuya ◽  
Kazuo Ichimura

Abstract Delphinium flowers are highly sensitive to ethylene and its sepals abscise during senescence, which is associated with increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) activities and ethylene production in gynoecium and receptacle. Three ACS genes (DgACS1, DgACS2, and DgACS3) and three ACO genes (DgACO1, DgACO2, and DgACO3) were cloned from Delphinium grandiflorum cv. Super Grand Blue. To investigate the contribution of these genes to ethylene production, their expression was analyzed in these genes in the gynoecium and receptacle during natural senescence and following ethylene exposure and pollination. Ethylene production in the gynoecium and receptacle increased during natural flower senescence. The transcript levels of the ACS and ACO genes in these organs, excluding DgACS2 in the receptacle, increased during senescence. Exposure to ethylene accelerated sepal abscission and more strongly increased ethylene production in the receptacle than in the gynoecium. DgACS1 transcript levels in the gynoecium and DgACS2 and DgACO3 transcript levels in the receptacle were increased by ethylene exposure. Pollination accelerated sepal abscission and increased ethylene production in the gynoecium and receptacle. Pollination slightly affected ACS and ACO transcript levels in the gynoecium, whereas DgACO3 transcript level in the receptacle were markedly increased. These results reveal that ACS and ACO gene expression is differently regulated in the gynoecium and receptacle, and some of these genes are more strongly upregulated by ethylene exposure and pollination in the receptacle than in the gynoecium, suggesting the significance of the receptacle to sepal abscission.


2021 ◽  
Vol 8 ◽  
Author(s):  
Morteza Soleimani Aghdam ◽  
Majid Alikhani-Koupaei ◽  
Raheleh Khademian

During postharvest life, broccoli suffers from floret yellowing confining its economic and nutritional value. The objective of the present study was to explore the mechanisms employed by phytosulfokine α (PSKα) at 150 nM for delaying floret yellowing in broccoli during storage at 4°C for 28 days. Our results showed that the higher endogenous accumulation of hydrogen sulfide (H2S) resulting from the higher gene expression and activities of l-cysteine desulfhydrase (LCD) and d-cysteine desulfhydrase (DCD) in broccoli floret treated with 150 nM PSKα may serve as an endogenous signaling molecule for delaying senescence. Moreover, the suppressed ethylene biosynthesis in broccoli floret treated with 150 nM PSKα might be ascribed to lower gene expression and activities of ACC synthase (ACS) and ACC oxidase (ACO). Furthermore, lower gene expression and activities of Mg2+ dechelatase (MDC), pheophytinase (PPH), and pheophorbide a oxygenase (PaO) might be the reasons for the higher accumulation of chlorophyll in broccoli floret treated with 150 nM PSKα. Based on our findings, exogenous PSKα application could be employed as signaling bioactive hormone for retarding floret yellowing of broccoli during storage at 4°C for 28 days.


2004 ◽  
Vol 17 (12) ◽  
pp. 1394-1401 ◽  
Author(s):  
Katherine A. Lahey ◽  
Rongcai Yuan ◽  
Jacqueline K. Burns ◽  
Peter P. Ueng ◽  
L. W. Timmer ◽  
...  

Colletotrichum acutatum infects citrus petals and induces premature fruit drop and the formation of persistent calyces. The accumulation of hormones and other growth regulators, and differential gene expression in affected flowers and young fruit, was examined following fungal infection. Ethylene evolution increased threefold and indole-3-acetic acid (IAA) accumulation was as much as 140 times. Abscisic acid (ABA) levels showed no significant response. After infection, both trans- and cis-12-oxo-phytodienoic acid increased 8- to 10-fold. No significant difference of trans-jasmonic acid (JA) was observed in citrus flower petals or pistils. However, a fivefold increase of cis-JA was detected. The amount of salicylic acid (SA) was elevated twofold in affected petals, but not in pistils. Northern blot analyses revealed that the genes encoding ACC oxidase or ACC synthase, and 12-oxo-phytodienoic acid (12-oxo-PDA) reductase, were highly expressed in affected flowers. The genes encoding auxin-related proteins also were upregulated. Application of 2-(4-chlorophenoxy)-2-methyl-propionic acid (clofibrate; a putative auxin inhibitor), 2,3,5-triiodobenzolic acid (an auxin transport inhibitor), or SA after inoculation significantly decreased the accumulation of the gene transcripts of auxin-responsive, GH3-like protein and 12-oxo-PDA reductase, but resulted in higher percentages of young fruit retention. The results indicate that imbalance of IAA, ethylene, and JA in C. acutatum-infected flowers may be involved in symptom development and young fruit drop.


1998 ◽  
Vol 67 (2) ◽  
pp. 204-209 ◽  
Author(s):  
Zhong Chuan Xu ◽  
Yoshinori Ikoma ◽  
Masamichi Yano ◽  
Kazunori Ogawa ◽  
Hiroshi Hyodo

Sign in / Sign up

Export Citation Format

Share Document