Ethylene production and 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase gene expression in apple fruit are affected by 9,10-ketol-octadecadienoic acid (KODA)

2012 ◽  
Vol 72 ◽  
pp. 20-26 ◽  
Author(s):  
S. Kondo ◽  
H. Tomiyama ◽  
M. Kittikorn ◽  
K. Okawa ◽  
H. Ohara ◽  
...  
2007 ◽  
Vol 132 (1) ◽  
pp. 120-125 ◽  
Author(s):  
Satoru Kondo ◽  
Hiroko Yamada ◽  
Sutthiwal Setha

The effects of n-propyl dihydrojasmonate (PDJ), which is a jasmonic acid derivative, on 1-aminocyclopropane-1-carboxylate (ACC) synthase and ACC oxidase activities, their gene expressions, and ethylene productions in ‘La France’ pears (Pyrus communis L.) were investigated. The fruit was harvested 156 days after full bloom, stored at 4 °C for 15 days, ripened at 20 °C, and then dipped into 0.39 mm PDJ solution at the preclimacteric stage (0 day of ripening at 20 °C) or the climacteric stage (9 days of ripening at 20 °C). In the skin of the PDJ-treated fruit at the preclimacteric stage, the expressions of ACC synthase (ACS)1 and ACC oxidase (ACO)1 were higher than the expressions of those in the untreated control. Ethylene production also increased in the PDJ-treated fruit. In contrast, the accumulation of the ACS1 messenger RNA (mRNA) levels in the skin and an increase of ethylene production were observed in the untreated control fruit at the climacteric stage, although the levels of mRNAs hybridized with ACO1 were not different between the PDJ-treated fruit and untreated control. The endogenous jasmonic acid levels in the skin increased in the PDJ-treated fruit regardless of the application times of PDJ. These results indicate that ACS1 may be an ACC synthase gene that is induced by jasmonates in pears, and that system 2 ethylene may be regulated by jasmonates.


2021 ◽  
Author(s):  
Mitsutoshi Okamoto ◽  
Tomoko Niki ◽  
Mirai Azuma ◽  
Kenichi Shibuya ◽  
Kazuo Ichimura

Abstract Delphinium flowers are highly sensitive to ethylene and its sepals abscise during senescence, which is associated with increases in 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS) and ACC oxidase (ACO) activities and ethylene production in gynoecium and receptacle. Three ACS genes (DgACS1, DgACS2, and DgACS3) and three ACO genes (DgACO1, DgACO2, and DgACO3) were cloned from Delphinium grandiflorum cv. Super Grand Blue. To investigate the contribution of these genes to ethylene production, their expression was analyzed in these genes in the gynoecium and receptacle during natural senescence and following ethylene exposure and pollination. Ethylene production in the gynoecium and receptacle increased during natural flower senescence. The transcript levels of the ACS and ACO genes in these organs, excluding DgACS2 in the receptacle, increased during senescence. Exposure to ethylene accelerated sepal abscission and more strongly increased ethylene production in the receptacle than in the gynoecium. DgACS1 transcript levels in the gynoecium and DgACS2 and DgACO3 transcript levels in the receptacle were increased by ethylene exposure. Pollination accelerated sepal abscission and increased ethylene production in the gynoecium and receptacle. Pollination slightly affected ACS and ACO transcript levels in the gynoecium, whereas DgACO3 transcript level in the receptacle were markedly increased. These results reveal that ACS and ACO gene expression is differently regulated in the gynoecium and receptacle, and some of these genes are more strongly upregulated by ethylene exposure and pollination in the receptacle than in the gynoecium, suggesting the significance of the receptacle to sepal abscission.


2006 ◽  
Vol 131 (5) ◽  
pp. 691-701 ◽  
Author(s):  
Alejandra Ferenczi ◽  
Jun Song ◽  
Meisheng Tian ◽  
Konstantinos Vlachonasios ◽  
David Dilley ◽  
...  

The effect of 1-methylcyclopropene (1-MCP) on biosynthesis of volatiles and fruit ripening in apple (Malus ×domestica Borkh.) was investigated using `Golden Delicious', `Jonagold', and `Redchief Delicious' fruit. Application of 1-MCP to `Golden Delicious' at the preclimacteric stage effectively inhibited ripening as determined by decreased expression of genes for 1-amino-1-cyclopropane carboxylic acid (ACC) oxidase (ACO), and ACC synthase, ACO protein content, climacteric ethylene production, respiration, and volatile ester biosynthesis. Exogenous ethylene applied after 1-MCP treatment did not induce ethylene production, respiration, or volatile production. Activity for alcohol acyltransferase, which catalyzes the final step in ester formation, was demonstrable for 1-MCP-treated fruit, indicating no strict limitation on ester formation is imposed by this enzyme and that ester formation in 1-MCP-treated apple fruit is at least partially limited by reduced substrate synthesis. Once volatile ester formation had been suppressed by 1-MCP, the recovery of volatile synthesis required ≈3 weeks for `Jonagold' and 4 weeks for `Delicious' when held in air at 22 °C. For the first 2 months of storage at 0 °C in air, `Jonagold' and `Delicious' required ≈3 weeks holding at 22 °C for volatile biosynthesis to initiate; after 5 months in refrigerated storage, volatile formation was evident at the time of removal from cold storage. For `Jonagold' fruit held in controlled atmosphere (CA) storage for 2, 5, and 7 months at 0 °C, at least 3 weeks holding at 22 °C were required for volatile formation to begin to recover. The maximal amount of volatile formation was reduced 50% by 1-MCP relative to nontreated control fruit. CA storage had a similar impact on maximal volatile formation. The marketing of 1-MCP-treated fruit soon after treatment might result in the delivery of fruit to the consumer with little likelihood of recovery of volatile ester formation prior to consumption.


HortScience ◽  
2008 ◽  
Vol 43 (5) ◽  
pp. 1454-1460 ◽  
Author(s):  
Rongcai Yuan ◽  
Jianguo Li

Effects of naphthaleneacetic acid (NAA), aminoethoxyvinylglycine (AVG), and sprayable 1-methylcyclopropene (1-MCP) alone or in combination on fruit ethylene production, preharvest fruit drop, fruit quality, and fruit maturation were examined in ‘Delicious’ apples (Malus ×domestica Borkh.). 1-MCP and AVG + NAA, when applied 15 days before anticipated harvest (DBAH) for untreated control trees, more effectively delayed preharvest fruit drop than AVG or NAA used alone. However, there was no significant difference in ethylene production between fruit treated with 1-MCP or AVG + NAA and those treated by AVG. Two applications of NAA increased fruit ethylene production and fruit softening, whereas AVG inhibited NAA-enhanced fruit ethylene production and fruit softening. There was no significant difference in fruit ethylene production, fruit firmness, and fruit drop control between one and two applications of 1-MCP. The concentrations of 1-MCP did not affect the efficacy of 1-MCP when applied 15 DBAH, but high concentration of 1-MCP more effectively delayed preharvest fruit drop than low concentration of 1-MCP when applied 7 DBAH. Both AVG and 1-MCP suppressed expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase gene MdACS1, ACC oxidase gene MdACO1, and polygalacturonase gene MdPG1 in fruit. Expression of ACS5A and MdACO1 but not MdACS1 in fruit abscission zones was decreased by AVG and 1-MCP. 1-MCP more effectively suppressed expression of MdPG2 in fruit abscission zones than AVG alone.


2008 ◽  
Vol 133 (6) ◽  
pp. 727-734 ◽  
Author(s):  
Hong Zhu ◽  
Eric P. Beers ◽  
Rongcai Yuan

Effects of naphthaleneacetic acid (NAA) and aminoethoxyvinylglycine (AVG) on young fruit abscission, leaf and fruit ethylene production, and expression of genes related to ethylene biosynthesis and cell wall degradation were examined in ‘Delicious’ apples (Malus ×domestica Borkh.). NAA at 15 mg·L−1 increased fruit abscission and ethylene production of leaves and fruit when applied at the 11-mm stage of fruit development, whereas AVG, an inhibitor of ethylene biosynthesis, at 250 mg·L−1 reduced NAA-induced fruit abscission and ethylene production of leaves and fruit. NAA also increased expression of 1-aminocyclopropane-1-carboxylate (ACC) synthase genes (MdACS5A and MdACS5B), ACC oxidase gene (MdACO1), and ethylene receptor genes (MdETR1a, MdETR1b, MdETR2, MdERS1, and MdERS2) in fruit cortex and fruit abscission zones. However, AVG reduced NAA-induced expression of these genes except for MdERS2 in fruit abscission zones. NAA increased expression of the polygalacturonase gene MdPG2 in fruit abscission zones but not in fruit cortex, whereas AVG reduced NAA-enhanced expression of MdPG2 in fruit abscission zones. The expression of β-1,4-glucanase gene MdCel1 in fruit abscission zones was decreased by NAA but was unaffected by AVG. Our results suggest that ethylene biosynthesis, ethylene perception, and the MdPG2 gene are involved in young fruit abscission caused by NAA.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sandhya Rani Kuanar ◽  
Kutubuddin Ali Molla ◽  
Krishnendu Chattopadhyay ◽  
Ramani Kumar Sarkar ◽  
Pravat Kumar Mohapatra

AbstractIn the recent time, Submergence1 (Sub1)QTL, responsible for imparting tolerance to flash flooding, has been introduced in many rice cultivars, but resilience of the QTL to stagnant flooding (SF) is not known. The response of Sub1-introgression has been tested on physiology, molecular biology and yield of two popular rice cultivars (Swarna and Savitri) by comparison of the parental and Sub1-introgression lines (SwarnaSub1 and SavitriSub1) under SF. Compared to control condition SF reduced grain yield and tiller number and increased plant height and Sub1- introgression mostly matched these effects. SF increased ethylene production by over-expression of ACC-synthase and ACC-oxidase enzyme genes of panicle before anthesis in the parental lines. Expression of the genes changed with Sub1-introgression, where some enzyme isoform genes over-expressed after anthesis under SF. Activities of endosperm starch synthesizing enzymes SUS and AGPase declined concomitantly with rise ethylene production in the Sub1-introgressed lines resulting in low starch synthesis and accumulation of soluble carbohydrates in the developing spikelets. In conclusion, Sub1-introgression into the cultivars increased susceptibility to SF. Subjected to SF, the QTL promoted genesis of ethylene in the panicle at anthesis to the detriment of grain yield, while compromising with morphological features like tiller production and stem elongation.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1143D-1144
Author(s):  
Mehar Asif ◽  
Prabodh Trivedi ◽  
Theophanes Solomos ◽  
Autar Mattoo

We have studied the effects of MCP and low O2, applied singly and in combination, on apple fruit ripening at 1, 7, and 18 °C. The single application of 2 ppm MCP is more effective in delaying the onset of the C2H4 climacteric than is 1% O2. However, the combined application has a much larger effect than the single applications of either MCP or 1% O2. For instance, at 7 °C, the onset of the C2H4 climacteric occurs at 15, 50, and 90–95 days for the controls, 1% O2 and 2 ppm MCP, respectively, whereas the combined application of 2 ppm MCP and 1% O2 suppressed the initiation of the C2H4 climacteric for 200 days, the duration of the experiment. The retardation of the climacteric onset by the treatments is associated with the suppression of ACC-synthase (ACS1) and the putative receptor ERS1. The accumulation of their transcripts is critically dependent on the rate of C2H4 evolution. As expected, the combined application of MCP and 1% O2 completely suppressed the expression of both genes. Yet when the fruits were transferred to 18 °C in air, they ripened normally. A similar pattern of inhibition in response to the above treatments was also observed with a C2H4-dependent MAPK. The expression of ETR1, ETR2 and ACC-oxidase was not affected by the treatments. The nature of this strong effect of the combined application of MCP and low O2 is not clear. It should be pointed out that MCP does not inhibit the induction of hypoxic proteins such as ADH.


2020 ◽  
Author(s):  
Yinglin Ji ◽  
Yi Qu ◽  
Zhongyu Jiang ◽  
Xin Su ◽  
Pengtao Yue ◽  
...  

ABSTRACTThe plant hormone ethylene is important for the ripening of climacteric fruit, such as pear (Pyrus ussuriensis), and the brassinosteroid (BR) class of phytohormones affects ethylene biosynthesis during ripening, although via an unknown molecular mechanism. Here, we observed that exogenous BR treatment suppressed ethylene production during pear fruit ripening, and that the expression of the transcription factor PuBZR1 was enhanced by epibrassinolide (EBR) treatment during pear fruit ripening. PuBZR1 was shown to interact with PuACO1, which converts 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene, and suppress its activity. We also observed that BR-activated PuBZR1 bound to the promoters of PuACO1 and of PuACS1a, which encodes ACC synthase, and directly suppressed their transcription. Moreover, PuBZR1 suppressed the expression of transcription factor PuERF2 by binding its promoter, and PuERF2 bound to the promoters of PuACO1 and PuACS1a. We concluded that PuBZR1 indirectly suppresses the transcription of PuACO1 and PuACS1a through its regulation of PuERF2. Ethylene production and the expression profiles of the corresponding apple (Malus domestica) homologs showed similar changes following EBR treatment. Together, these results suggest that BR-activated BZR1 suppresses ACO1 activity and the expression of ACO1 and ACS1a, thereby reducing ethylene production during pear and apple fruit ripening. This likely represents a conserved mechanism by which exogenous BR suppresses ethylene biosynthesis during climacteric fruit ripening.One-sentence summaryBR-activated BZR1 suppresses ACO1 activity and expression of ACO1 and ACS1a, which encode two ethylene biosynthesis enzymes, thereby reducing ethylene production during pear and apple fruit ripening.


Sign in / Sign up

Export Citation Format

Share Document