Magnesium hydride acts as a convenient hydrogen supply to prolong the vase life of cut roses by modulating nitric oxide synthesis

2021 ◽  
Vol 177 ◽  
pp. 111526
Author(s):  
Ying Li ◽  
Longna Li ◽  
Shu Wang ◽  
Yuhao Liu ◽  
Jianxin Zou ◽  
...  
Author(s):  
O. V. Bazilyuk ◽  
Anatolii V. Kotsuruba ◽  
Lyubov. G. Stepanenko ◽  
Sergey A. Talanov ◽  
Yu. P. Korchak ◽  
...  

Circulation ◽  
1995 ◽  
Vol 92 (9) ◽  
pp. 2636-2644 ◽  
Author(s):  
Akira Ito ◽  
Kensuke Egashira ◽  
Toshiaki Kadokami ◽  
Yoshihiro Fukumoto ◽  
Tsuneo Takayanagi ◽  
...  

Hypertension ◽  
1995 ◽  
Vol 26 (6) ◽  
pp. 1019-1023 ◽  
Author(s):  
Sofía P. Salas ◽  
Fernando Altermatt ◽  
Mauricio Campos ◽  
Andrea Giacaman ◽  
Pedro Rosso

Hypertension ◽  
1997 ◽  
Vol 30 (5) ◽  
pp. 1112-1120 ◽  
Author(s):  
Keiji Yamamoto ◽  
Uichi Ikeda ◽  
Koji Okada ◽  
Toshikazu Saito ◽  
Yasuhiro Kawahara ◽  
...  

Hypertension ◽  
1997 ◽  
Vol 30 (4) ◽  
pp. 922-927 ◽  
Author(s):  
Bingbing Jiang ◽  
Shigeto Morimoto ◽  
Jin Yang ◽  
Keisuke Fukuo ◽  
Atsushi Hirotani ◽  
...  

1998 ◽  
Vol 18 (2) ◽  
pp. 188-192 ◽  
Author(s):  
Andrzej Breborowicz ◽  
Katarzyna Wieczorowska Tobis ◽  
Katarzyna Korybalska ◽  
Alicja Polubinska ◽  
Maciej Radkowski ◽  
...  

Objective To assess the effect of an inhibitor of nitric oxide synthesis [NG-nitro-L-arginine methyl ester (L-NAME)] on peritoneal transport during peritoneal dialysis (PD) and peritonitis in rats. Methods The authors studied peritoneal transport of small and large solutes, and net ultrafiltration (UF) in rats during PD with Dianeal 3.86 (Baxter, McGaw Park, IL, U.S.A.). They evaluated the effect of L-NAME used as an additive to dialysis fluid in concentrations 0.5 -5 mg/m L on peritoneal transport of small and large molecules and on transperitoneal UF. In addition, they studied the effect of L-NAME (5 mg/mL) during acute peritonitis induced by lipopolysaccharides (5 μg/mL) given intraperitoneally. Results The addition of L-NAME to dialysis fluid increased the selectivity of the peritoneum and net UF during dialysis. Lipopolysaccharides used as an additive to the dialysis fluid, together with L-NAME, did not induce changes in transperitoneal transport of small and large solutes and did not cause a significant decline in net UF. L-NAME given intraperitoneally reduced both local and systemic production of nitric oxide, which might explain its effects on peritoneal transport. Conclusions Nitric oxide is an important mediator of changes in peritoneal transport and its effect is especially significant during peritonitis.


Neonatology ◽  
2002 ◽  
Vol 82 (3) ◽  
pp. 197-206 ◽  
Author(s):  
Stefan Kutzsche ◽  
Anne-Beate Solas ◽  
Torstein Lyberg ◽  
Ola D. Saugstad

1994 ◽  
Vol 267 (6) ◽  
pp. R1454-R1460 ◽  
Author(s):  
N. M. Atucha ◽  
J. Garcia-Estan ◽  
A. Ramirez ◽  
M. C. Perez ◽  
T. Quesada ◽  
...  

In the present study, we have characterized the renal response to inhibition of endogenous nitric oxide (NO) synthesis [intravenous NG-nitro-L-arginine methyl ester (L-NAME) for 3 h] in anesthetized cirrhotic rats, with (ASC) and without (CIR) ascites, at doses that do not change blood pressure (BP). Administration of L-NAME induced opposite effects on water (UV) and sodium (UNaV) excretion in cirrhotic and control animals. Infusion of 1 microgram.kg-1.min-1 of L-NAME in CIR (n = 5) decreased renal plasma flow (RPF) at the end of the 3-h period, whereas UV, UNaV, and glomerular filtration rate (GFR) were unaltered. In contrast, infusion of L-NAME at 10 micrograms.kg-1.min-1 in six more CIR increased UV and UNaV significantly by the 1st h, without changes in BP or GFR, and these parameters remained elevated throughout the experiment. Infusion of 1 microgram.kg-1.min-1 in ASC (n = 6) did not change BP or GFR but significantly enhanced UV and UNaV after the 1st h. These effects were prevented by pretreatment with L-arginine (0.1 mg.kg-1.min-1) in another group of ASC infused with 1 microgram.kg-1.min-1 of L-NAME. These results indicate that, in ASC and CIR cirrhotic rats, inhibition of NO synthesis at nonpressor does improves renal excretion of sodium and water via a decrease in tubular reabsorption. NO is an important mediator of the renal excretory and hemodynamic alterations of experimental liver cirrhosis.


Sign in / Sign up

Export Citation Format

Share Document