dialysis fluid
Recently Published Documents


TOTAL DOCUMENTS

474
(FIVE YEARS 63)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
pp. 1-9
Author(s):  
Hiroshi Nozaki ◽  
Yoshihiro Tange ◽  
Yoji Inada ◽  
Takashi Uchino ◽  
Nakanobu Azuma

<b><i>Introduction:</i></b> Ultrapurification of dialysis fluid has enabled highly efficient dialysis treatments. Online hemodiafiltration is one such treatment that uses a purified dialysis fluid as a supplemental fluid. In this method, an endotoxin retentive filter (ETRF) is used in the final step of dialysis fluid purification, with the aim of preventing leakage of endotoxins. Sodium hypochlorite and peracetic acid are used as disinfecting agents for the dialysis fluid pipes containing the ETRF; however, the effects of these agents on ETRF membrane pores have not been fully clarified. <b><i>Methods:</i></b> Water permeability (flux) and endotoxin permeability were assessed in 3 types of ETRFs made with different membrane materials: polyester polymer alloy (PEPA), polyether sulfone (PES), and polysulfone (PS). High-concentration sodium hypochlorite and 2 types of peracetic acid were used as disinfecting agents, and the changes in flux and the endotoxin sieving coefficient (SC) were measured. <b><i>Results:</i></b> After repeated use of high concentrations of sodium hypochlorite and peracetic acid, the PEPA and PES ETRFs did not permit passage of endotoxins, regardless of their flux. However, in the PS ETRF, the flux and endotoxin SC increased with the number of cleaning cycles. No differences were observed according to the concentration of peracetic acid disinfecting agents. <b><i>Conclusion:</i></b> PEPA and PES ETRFs completely prevent endotoxin leakage and can be disinfected at concentrations higher than the conventionally recommended concentration without affecting pore expansion. Even new PS ETRFs have low levels of endotoxin leakage, which increase after disinfection cycles using sodium hypochlorite and peracetic acid.


Author(s):  
Zheng-Hong Li ◽  
Rong Xu ◽  
Jun Shi ◽  
Man-Shu Yu ◽  
Yu Zhong ◽  
...  

Peritoneal fibrosis (PF) is a disease caused by prolonged exposure of the peritoneum to high levels of dialysis fluid. Astragalus total saponins (ATS) is a phytochemical naturally occurring in Radix Astragali that has anti-inflammatory and anti-oxidant properties. In this study, we constructed an in vivo model of PF using 4.25% glucose-containing administered intraperitoneally to rats and incubated peritoneal mesothelial cells (PMCs) with 4.25% glucose-containing peritoneal dialysis fluid to construct an in vitro model of PF. Furthermore, siRNA of PGC-1[Formula: see text] was used to inhibit the expression of PGC-1[Formula: see text] to further investigate the mechanism of the protective effect of ATS on PF. In both in vivo and in vitro models, ATS treatment showed a protective effect against PF, with ATS reducing the thickness of peritoneal tissues in PF rats, increasing the viability of PMCs, increasing the mitochondrial membrane potential and reducing apoptosis ratio. ATS treatment also reduced the expressions of peritoneal fibrosis markers (Smad2, p-Smad2 and [Formula: see text]-SMA) and apoptosis markers (Caspase3, cleaved-Caspase3 and Bax) and restored the expressions of mitochondrial synthesis proteins (PGC-1[Formula: see text], NRF1 and TFAM) in ATS-treated peritoneal tissues or PMCs. Furthermore, in the presence of PGC-1[Formula: see text] inhibition, the protective effect of ATS on PF was blocked. In conclusion, ATS treatment may be an effective therapeutic agent to inhibit high glucose-induced in peritoneal fibrosis through PGC-1[Formula: see text]-mediated apoptosis.


QJM ◽  
2021 ◽  
Vol 114 (Supplement_1) ◽  
Author(s):  
Hesham Mohamed Elsayed ◽  
Badawy Labeeb Mahmoud ◽  
Mohamed Saeed Hassan ◽  
Ahmed Elsayed Elsayed Mohamed Moustafa

Abstract Background Dialysis is a chronic inflammatory state due to both decreased renal clearance and increased production of procytokines, moreover extracorporeal factors, such as impurities in dialysis water,etc. The central dialysis fluid delivery system (CDDS) is a cost-effective, laborsaving, time-tested system with good microbial safety, which has been used for 45 years in many countries & this study, studies the effect of (CDDS) on IL6 & hs-CRP levels in prevalent hemodialysis patients. Aim of the Work To compare the effect of central dialysis fluid delivery system (CDDS) versus single-patient dialysis fluid delivery system (SPDDS) in purification of water that used in dialysate and its effect on inflammatory markers (hs-CRP & IL-6) levels in prevalent hemodialysis patients. Patients and Methods A Case control study that was conducted on 100 patients of end-stage renal disease on hemodialysis in a university-affiliated hospital. Patients were classified into two groups, each included 50 patients; group (1) receiving regular dialysis by central dialysis fluid delivery system (CDDS), while group (2) receiving regular dialysis by single patient dialysis fluid delivery system (SPDDS) . Patients underwent full clinical assessment including thorough history taking, clinical examination, routine investigation, IL-6 and hsCRP testing to all patients. Results One hundred prevalent hemodialysis patients were included in this study. In this study, the levels of IL-6 and hs-CRP were found to be significantly higher in group 2 (SPDS) as compared to group 1 (CDDS). Conclusion In conclusion, central dialysis fluid delivery system (CDDS) seems to have a better effect on systemic inflammation (IL-6 and hsCRP) as compared with single-patient dialysis fluid delivery system (SPDDS). There is a statistically negative correlation between serum IL-6 and hsCRP levels with dry weight, Hemoglobin level, serum creatinine level & serum albumin level for group (1) (CDDS). However, there is a statistically positive correlation between serum IL-6 and hsCRP levels with Total Leuckocytic Count (TLC), serum ferritin level, serum potassium level, weight gain and duration of dialysis for group (2) (SPDS).


Author(s):  
N. M. Zhilo ◽  
M. O. Mikhailov ◽  
E. L. Litinskaia ◽  
K. V. Pozhar

Introduction. The transition of glucose into the blood during automated peritoneal dialysis with regeneration of the dialysis fluid leads to a decreased removal of excess fluid from the body and corresponding violations of the water-salt balance.Aim. To consider a system for automatically maintaining the concentration of glucose in the dialysate solution, which provides effective ultrafiltration, as well as to propose a non-contact photometric feedback sensor.Materials and methods. The sensor is an optical system of an IR laser diode with a power of 30 mW and a wavelength of 1600 nm, a photodiode and a quartz tube, through which the test solution circulates. The sensor measures the attenuation of the radiation passing through the solution in a pulsed mode and calculates the glucose concentration. The selected combination of digital filters provides compensation for the noise of the optical system. Experimental studies of the efficiency of the sensor were carried out on peritoneal dialysis solutions with various concentrations of urea, creatinine, uric acid and glucose. At the beginning of the experiments, the sensor was calibrated in a pure solution.Results. It was shown that the developed sensor makes it possible to measure the concentration of glucose in a solution for peritoneal dialysis in the range of 42…220 mmol / l with a relative error of about 15%. The time of one measurement is about 1 minute, which makes it possible to obtain up-to-date information on the current concentration of the solution.Conclusion. This combination of characteristics will allow the sensor to be used in artificial kidney wearable devices for assessing the glucose content in the solution, calculating the time to change the solution and as a feedback sensor in a system for maintaining the concentration of the osmotic agent.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tara E. Sutherland ◽  
Tovah N. Shaw ◽  
Rachel Lennon ◽  
Sarah E. Herrick ◽  
Dominik Rückerl

Peritoneal dialysis (PD) is a more continuous alternative to haemodialysis, for patients with chronic kidney disease, with considerable initial benefits for survival, patient independence and healthcare costs. However, long-term PD is associated with significant pathology, negating the positive effects over haemodialysis. Importantly, peritonitis and activation of macrophages is closely associated with disease progression and treatment failure. However, recent advances in macrophage biology suggest opposite functions for macrophages of different cellular origins. While monocyte-derived macrophages promote disease progression in some models of fibrosis, tissue resident macrophages have rather been associated with protective roles. Thus, we aimed to identify the relative contribution of tissue resident macrophages to PD induced inflammation in mice. Unexpectedly, we found an incremental loss of homeostatic characteristics, anti-inflammatory and efferocytic functionality in peritoneal resident macrophages, accompanied by enhanced inflammatory responses to external stimuli. Moreover, presence of glucose degradation products within the dialysis fluid led to markedly enhanced inflammation and almost complete disappearance of tissue resident cells. Thus, alterations in tissue resident macrophages may render long-term PD patients sensitive to developing peritonitis and consequently fibrosis/sclerosis.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Jacek Waniewski ◽  
Joanna Stachowska-Pietka ◽  
Roman Cherniha ◽  
Bengt Lindholm

Abstract Background and Aims Experimental studies and computational modeling show increased hydration of peritoneal tissue close to peritoneal surface after intraperitoneal (ip) administration of hypertonic dialysis fluid. This overhydration - due to fluid inflow from peritoneal cavity (driven by increased intraperitoneal pressure) and from blood (due to high interstitial concentration of osmotic agent diffusing from the cavity) - may lead to tissue swelling, as observed in experiments and in disturbed physiological conditions. We estimated the degree of swelling using linear poroelastic theory with fluid and solute transport parameters obtained from clinical studies. Method The spatially distributed model of peritoneal transport was extended by equations for tissue deformation and stress derived from linear poroelastic theory. The model describes also fluid and osmotic agent flows across tissue and capillary wall. We assumed that transport and deformation occur across a layer of tissue with initial intact width L0 and deformed width L; the deformation is described as the ratio L/L0. Transport parameters are assumed as average values estimated for intact tissue by Stachowska-Pietka (2019). As tissue stiffness (Lame coefficient) for muscle is not known, we examined stiffness ranging from 110 mmHg (connective tissue; interstitium) to 700 mmHg (solid tumor). We assumed that for initial periods of peritoneal dialysis when osmotic pressure of dialysis fluid is high: 1) osmotic pressure gradient across the capillary wall prevails over the combined Starling forces, 2) spatial profile of osmotic agent concentration in tissue (interstitial fluid) can be approximated by exponential function with the penetration depth ΛS. The model yields an equation for L/L0 to be solved numerically, but an approximated closed formula also works well for typical dialysis conditions. Results The model predicts that swelling of peritoneal tissue depends on factors such as tissue stiffness, tissue width, solute penetration depth, and transport parameters for tissue and capillary wall, and on the forces that induce fluid transport: intraperitoneal pressure and the increment of osmolality of dialysis fluid over plasma osmolality. Examples of L/L0 yielded by the model - with use of glucose 1.36% dialysis fluid and for two levels of ip hydrostatic pressure (Pip) - are shown. In Figure, left panel, for L0 = 1 cm representing human abdominal muscle, and solute diffusional penetration ΛS=ΛD=0.055 cm, or lower, as due to diffusion against fluid flow, ΛS=ΛD/2=0.027 cm, is plotted versus the tissue stiffness; the dialysis fluid with glucose 1.36% is applied (osmolality increment of 60 mmol/L at the beginning of peritoneal dwell, Waniewski et al, 1996) and Pip is 15 mmHg. As stiffness of abdominal and bowel muscles may be expected around 300 mm Hg, swelling might be up to 15%; it decreases with lower ip hydrostatic and osmotic pressures. Hypothetical dialysis at Pip = 0 (isobaric with interstitial fluid) would reduce swelling by factor 2, see Figure, right panel. The depth of osmotic agent penetration into the tissue impacts tissue hydration and swelling, see Figure 1 for L/L0 with twice reduced ΛS. The model and its approximation by the closed formula provide practically the same outcomes for clinical peritoneal dialysis, see Figure 1, but some discrepancy between them may occur for thin tissue, as rat abdominal wall. The approximate formula for L/L0 works well if ΛS is much shorter than L0. Nevertheless, for high degree of swelling a nonlinear theory should be constructed. Conclusion In peritoneal dialysis, exposure of peritoneal tissue to hypertonic dialysis fluid at increased hydrostatic pressure contributes to overhydration and swelling (by 5-15% after fluid infusion) of the tissue. The extent by which this swelling may contribute to changes in peritoneal tissue structure and function warrants further studies.


Sign in / Sign up

Export Citation Format

Share Document