Reduction behavior of vanadium-titanium magnetite carbon composite hot briquette in blast furnace process

2019 ◽  
Vol 342 ◽  
pp. 214-223 ◽  
Author(s):  
Wei Zhao ◽  
Mansheng Chu ◽  
Hongtao Wang ◽  
Zhenggen Liu ◽  
Jue Tang ◽  
...  
2011 ◽  
Vol 284-286 ◽  
pp. 1039-1043 ◽  
Author(s):  
Qiang Jian Gao ◽  
Guo Wei ◽  
Lin Mu ◽  
Gang Du ◽  
Feng Man Shen

As a raw material, Indonesia vanadium-titanium sinters are being applied to the blast furnace process for iron making in the typical iron and steel plant. In order to keep the health running of blast furnace process, in this work we have investigated the softening and melting properties of Indonesia vanadium-titanium sinters. We found that the content of vanadium-titanium magnetite in sinter is correlated with the softening and melting ranges for those sinters considered here. With the increasing of the vanadium-titanium magnetite in sinter, the starting softening temperature increases gradually and the final softening temperature increases as well, thereby the softening range becomes narrow. Both starting and final melting temperatures begin to ascent, and the variation of melting range is not obvious. In addition, we also found that the coke is wetted by the molten slag and iron. From the viewpoint of blast furnace process, the softening and melting zone has to move downward. In this zone of blast furnace the contact area of solid-liquid phase will get larger because of the close contract among the molten slag, iron and coke. On one hand, this kind of behavior can definitely speed up the reduction of iron oxide. On the other hand, it simultaneously worse the ventilation properties and affect the normal running of air flow, because a lot of iron and slag can not be got smoothly into the hearth through coke layer.


2020 ◽  
Vol 92 (1) ◽  
pp. 2000326
Author(s):  
Wei Zhang ◽  
Jing Dai ◽  
Chengzhi Li ◽  
Xiaobing Yu ◽  
Zhengliang Xue ◽  
...  

2013 ◽  
Vol 281 ◽  
pp. 490-495 ◽  
Author(s):  
Adji Kawigraha ◽  
Johny Wahyuadi Soedarsono ◽  
Sri Harjanto ◽  
Pramusanto

Blast furnace process is still an important process for producing pig iron. The process needs high grade iron ore and coke. The two materials can not be found easily. In addition blast furnace process needs cooking and sintering plant that produces polluted gases. Utilization of composite pellet for pig iron production can simplify process. The pellet is made of iron ore and coal. In addition the pellet can be made from other iron source and coal. This paper discusses the evolution of phase during reduction of composite pellet containing lateritic iron ore. Fresh iron ore and coal were ground to 140 mesh separately. They were mixed and pelletized. The quantity of coal added was varied from 0 %, 20 % and 29 % of pellet weight. Pellets were heated with 10 °C/minute to 1100 °C, 1200 °C, 1300 °C and 1350 °C in a tube furnace and temperature was held during 10 minutes. Heated pellets were analyzed with XRD equipment. XRD of reduced pellets showed that iron phase change with coal and temperature. Lack of coal during heating results the re-oxidation of iron phases. This process is due to replacement of reductive atmosphere by oxidative atmosphere.


Sign in / Sign up

Export Citation Format

Share Document