Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model

2021 ◽  
Vol 377 ◽  
pp. 439-452 ◽  
Author(s):  
Bagh Ali ◽  
Sajjad Hussain ◽  
Yufeng Nie ◽  
Ahmed Kadhim Hussein ◽  
Danial Habib
Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1555 ◽  
Author(s):  
Bagh Ali ◽  
Rizwan Ali Naqvi ◽  
Amir Haider ◽  
Dildar Hussain ◽  
Sajjad Hussain

A study for MHD (magnetohydrodynamic) impacts on the rotating flow of Casson nanofluids is considered. The concentration and temperature distributions are related along with the double diffusion Cattaneo–Christov model, thermophoresis, and Brownian motion. The governing equations in the 3D form are changed into dimensionless two-dimensional form with the implementation of suitable scaling transformations. The variational finite element procedure is harnessed and coded in Matlab script to obtain the numerical solution of the coupled nonlinear partial differential problem. The variation patterns of Sherwood number, Nusselt number, skin friction coefficients, velocities, concentration, and temperature functions are computed to reveal the physical nature of this examination. It is seen that higher contributions of the magnetic force, Casson fluid, and rotational fluid parameters cause to raise the temperature like thermophoresis and Brownian motion does but causes slowing the primary as well as secondary velocities. The FEM solutions showing an excellent correlation with published results. The current study has significant applications in the biomedical, modern technologies of aerospace systems, and relevance to energy systems.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Fayeza Al Sulti

Stagnation-point flow toward a stretching sheet with slip effects has been investigated. Unlike most classical works, Cattaneo–Christov heat flux model is utilized for the formulation of the energy equation instead of Fourier's law of heat conduction. A similarity transformation technique is adopted to reduce partial differential equations into a system of nonlinear ordinary differential equations. Numerical solutions are obtained by using shooting method to explore the features of various parameters for the velocity and temperature distributions. The obtained results are graphically presented and analyzed. It is found that fluid temperature has a converse relationship with the thermal relaxation time. A comparison of Cattaneo–Christov heat flux model and Fourier's law is also presented.


2021 ◽  
Vol 145 ◽  
pp. 110774
Author(s):  
R.J. Punith Gowda ◽  
Fahad S. Al-Mubaddel ◽  
R. Naveen Kumar ◽  
B.C. Prasannakumara ◽  
Alibek Issakhov ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Gosa Gadisa ◽  
Tagay Takele ◽  
Shibiru Jabessa

In this investigation, thermal radiation effect on MHD nonlinear convective micropolar couple stress nanofluid flow by non-Fourier’s-law heat flux model past a stretching sheet with the effects of diffusion-thermo, thermal-diffusion, and first-order chemical reaction rate is reported. The robust numerical method called the Galerkin finite element method is applied to solve the proposed fluid model. We applied grid-invariance test to approve the convergence of the series solution. The effect of the various pertinent variables on velocity, angular velocity, temperature, concentration, local skin friction, local wall couple stress, local Nusselt number, and local Sherwood number is analyzed in both graphical and tabular forms. The range of the major relevant parameters used for analysis of the present study was adopted from different existing literatures by taking into consideration the history of the parameters and is given by 0.07 ≤ Pr ≤ 7.0 , 0.0 ≤ λ , ε ≤ 1.0 , 0.0 ≤ R d , D f   , S r , K , ≤ 1.5 , 0.0 ≤ γ E ≤ 0.9 , 0.9 ≤ S c ≤ 1.5 , 0.5 ≤ M ≤ 1.5 , 0.0 ≤ β ≤ 1.0 , 0 . 2 ≤ N b ≤ 0 . 4 , 0 . 1 ≤ N t ≤ 0 . 3 . The result obtained in this study is compared with that in the available literatures to confirm the validity of the present numerical method. Our result shows that the heat and mass transfer in the flow region of micropolar couple stress fluid can be enhanced by boosting the radiation parameters.


Sign in / Sign up

Export Citation Format

Share Document