fourier’s law
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 35)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Vol 63 ◽  
pp. 103391
Author(s):  
M.M. Freitas ◽  
A.J.A. Ramos ◽  
D.S. Almeida Júnior ◽  
P.T.P. Aum ◽  
J.L.L. Almeida

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7452
Author(s):  
Angela Camacho de la Rosa ◽  
David Becerril ◽  
María Guadalupe Gómez-Farfán ◽  
Raúl Esquivel-Sirvent

We present a numerical calculation of the heat transport in a Bragg mirror configuration made of materials that do not obey Fourier’s law of heat conduction. The Bragg mirror is made of materials that are described by the Cattaneo-Vernotte equation. By analyzing the Cattaneo-Vernotte equation’s solutions, we define the thermal wave surface impedance to design highly reflective thermal Bragg mirrors. Even for mirrors with a few layers, very high reflectance is achieved (>90%). The Bragg mirror configuration is also a system that makes evident the wave-like nature of the solution of the Cattaneo-Vernotte equation by showing frequency pass-bands that are absent if the materials obey the usual Fourier’s law.


Author(s):  
Angela Camacho de la Rosa ◽  
David Becerril ◽  
Guadalupe Gómez-Farfán ◽  
Raul P Esquivel-Sirvent

We present a numerical calculation of the heat transport in a Bragg mirror configuration made of materials that do not obey Fourier's law of heat conduction. The Bragg mirror is made of materials that are described by the Cattaneo-Vernotte equation. By analyzing the Cattaneo-Vernotte equation's solutions, we define the thermal wave surface impedance to design highly reflective thermal Bragg mirrors. Even for mirrors with a few layers, very high reflectance is achieved ($>90\%$). The Bragg mirror configuration is also a system that makes evident the wave-like nature of the solution of the Cattaneo-Vernotte equation by showing frequency pass-bands that are absent if the materials obey the usual Fourier's law.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nadeem Ahmad Sheikh ◽  
Dennis Ling Chuan Ching ◽  
Ilyas Khan ◽  
Hamzah Bin Sakidin ◽  
Muhammad Jamil ◽  
...  

AbstractThe present work used fractional model of Casson fluid by utilizing a generalized Fourier’s Law to construct Caputo Fractional model. A porous medium containing nanofluid flowing in a channel is considered with free convection and electrical conduction. A novel transformation is applied for energy equation and then solved by using integral transforms, combinedly, the Fourier and Laplace transformations. The results are shown in form of Mittag-Leffler function. The influence of physical parameters have been presented in graphs and values in tables are discussed in this work. The results reveal that heat transfer increases with increasing values of the volume fraction of nanoparticles, while the velocity of the nanofluid decreases with the increasing values of volume fraction of these particles.


2021 ◽  
Author(s):  
Yu Bai ◽  
Sa Wan ◽  
Yan Zhang

Abstract The aim of the article is to research the unsteady magnetohydrodynamic stagnation-point flow of fractional Oldroyd-B fluid over a stretched sheet. According to the distribution characteristics of pressure and magnetic field near the stagnation point, the momentum equation based on fractional Oldroyd-B constitutive model is derived. Moreover, the modified fractional Fourier's law considering thermal relaxation-retardation time is proposed, which applies in both the energy equation and the boundary condition of convective heat transfer. New finite difference scheme combined with L1 algorithm is established to solve the governing equations, whose convergence is confirmed by constructing the exact solution. The results indicate that the larger relaxation parameters of velocity block the flow, yet the retardation parameters of velocity show the opposite trend. It is particularly worth mentioning that all the temperature profiles first go up slightly to a maximal value and then descend markedly, which presents the thermal retardation characteristic of Oldroyd-B fluid. Additionally, under the effects of temperature's retardation and relaxation parameters, the intersection of the profiles far away from stretching sheet demonstrates the thermal memory characteristic.


2021 ◽  
Vol 280 ◽  
pp. 891-927
Author(s):  
M.M. Freitas ◽  
A.J.A. Ramos ◽  
A.Ö. Özer ◽  
D.S. Almeida Júnior

Sign in / Sign up

Export Citation Format

Share Document