Influence of particle size distribution width on GFA index of uniaxially compressed granular materials

2021 ◽  
Vol 377 ◽  
pp. 666-675
Author(s):  
Ragunanth Venkatesh ◽  
Miha Brojan ◽  
Igor Emri ◽  
Arkady Voloshin ◽  
Edvard Govekar
Author(s):  
J. Abutu ◽  
S.A. Lawal ◽  
M.B. Ndaliman ◽  
R.A. Lafia-Araga ◽  
A.S. Abdulrahman

In this study, locally sourced natural materials (coconut shells and seashells) were used separately to produce composites. The powders were sieved with sieve size of 10 µm and characterized using a particle size analyser (DLS) in order to ascertain their particle size distribution. Also, the effects of particle size distribution on the performance of sourced coconut shells and seashells-based composite was investigated. About 52% of the characterized powder was afterward used along with other ingredients (35% binder, 8% alumina and 5% graphite) to produced composites using moulding pressure (14 MPa), moulding temperature (160 ºC), curing time (12 min) and heat treatment time (1 hr). The performance of the composites was thereafter evaluated using standard testing procedures. The results of particle size analysis indicated that the seashell powder (0.27) possesses lower distribution width (PDI) compared to the coconut shell powder (0.342) while the coconut shell (542.3 nm) showed lower Z-average diameter compared to the seashell powder (1096 nm) with some little traces of nanoparticles (<10 µm). Also, the experimental results obtained from composite characterization indicated that the coconut shell-based samples exhibited better performance in terms of its mechanical and tribological properties compared to the seashell-based samples.


2017 ◽  
Author(s):  
Elizaveta Malinina ◽  
Alexei Rozanov ◽  
Vladimir Rozanov ◽  
Patricia Liebing ◽  
Heinrich Bovensmann ◽  
...  

Abstract. Information about aerosols in the Earth’s atmosphere is of a great importance in the scientific community. While tropospheric aerosol influences the radiative balance of the troposphere and affects human health, stratospheric aerosol plays an important role in atmospheric chemistry and climate change. In particular, information about the amount and distribution of stratospheric aerosols is required to initialize climate models, as well as validate aerosol microphysics models and investigate geoengineering. In addition, good knowledge of stratospheric aerosol loading is needed to increase the retrieval accuracy for the key trace gases (e.g. ozone or water vapor), when interpreting remote sensing measurements of the scattered solar light. There are several parameters which are commonly used to describe stratospheric aerosols, such as the aerosol extinction coefficient and Ångström coefficient. However, the use of particle size distribution parameters coupled with the aerosol number density is an unambiguous and more optimal approach. In this manuscript we present a new retrieval algorithm to obtain the particle size distribution of the stratospheric aerosol from space borne observations of the scattered solar light in the limb viewing geometry. While the mode radius and width of the aerosol particle size distribution are retrieved, the aerosol particle number density remains unchanged. The latter is justified by a lower sensitivity of the limb-scattering measurements to changes in this parameter. To our knowledge this the first data set providing two parameters of the particle size distribution of the stratospheric aerosol from space borne measurements of the scattered solar light. Generally, the mode radius and absolute distribution width can be retrieved with the uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N–20° S) for 10 years (2002–2012) of SCIAMACHY observations in limb viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size distribution parameters showed clear increases of the mode radius after the tropical volcanic eruptions, whereas no distinct behaviour oft the absolute distribution width could be identified. A tape recorder, which describes the time lag as the perturbation propagates to higher altitudes, was identified for both parameters after the volcanic eruptions. A Quasi Biannual Oscillation (QBO) pattern at upper altitudes (28–32 km) is prominent in the anomalies of the analyzed parameters. A comparison of the aerosol effective radii derived from SCIAMACHY and SAGE II data was performed. The average difference is found to be around 30 % at the lower altitudes decreasing with increasing height to almost zero around 30 km. The data sample available for the comparison is, however, relatively small.


2021 ◽  
Author(s):  
Christine Pohl ◽  
Alexei Rozanov ◽  
Elizaveta Malinina-Rieger ◽  
Terry Deshler ◽  
Ulrike Niemeier ◽  
...  

&lt;p&gt;Stratospheric aerosols play an important role in the climate system and the atmospheric chemistry. They alter the radiative budget of the Earth affecting the global temperature and interact with stratospheric trace gases leading to ozone depletion. Effects are most noticeable after vulcanic eruptions enhancing the amount of aerosols in the stratosphere. Thus, vertically and spatially resolved knowledge about stratospheric aerosols, such as the particle size distribution and extinction coefficient, is crucial for the initialization of climate models, investigation of geoengineering, validation of aerosol micro-physical models, and improvement of trace gas retrievals. We present an algorithm to retrieve aerosol particle size distribution parameters (mode radius and distribution width, number density) from limb observations of SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric ChartograpHY) operated aboard Envisat between 2002 and 2012. SCIAMACHY retrieved particle size distribution profiles are compared with in-situ balloon-borne measurements from Laramie, Wyoming. Both data-sets show good agreement. The stratospheric plume evolution after the eruption of Sarychev in the Kuril Islands, Russia, in June 2009 is investigated and compared to the output from the aerosol-climate modelling system ECHAM5-HAM.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document