A four-quadrant flow regime map for two-phase liquid-solids and gas-solids fluidization systems

Author(s):  
Zeneng Sun ◽  
Jesse Zhu
2008 ◽  
Vol 66 (1-2) ◽  
pp. 94-98 ◽  
Author(s):  
J.S. Chang ◽  
C. Ayrault ◽  
D. Brocilo ◽  
D. Ewing ◽  
G.D. Harvel ◽  
...  

Author(s):  
Darin J. Sharar ◽  
Nicholas R. Jankowski ◽  
Avram Bar-Cohen

The absence of phenomenological insights and accurate flow regime models makes it difficult to predict the improved effectiveness of internally-grooved tubes for two-phase heat transfer. A re-interpretation of available data and flow regime maps is used to suggest that performance improvement is a result of early transition to Annular flow. A modified flow regime map, with a newly-developed Stratified-Wavy to Annular transition criteria for internally-grooved tubes, is shown to increase regime prediction accuracy by 27% relative to the traditional, smooth tube flow regime prediction.


AIChE Journal ◽  
1988 ◽  
Vol 34 (1) ◽  
pp. 137-139 ◽  
Author(s):  
S. B. Reddy Karri ◽  
V. K. Mathur

Author(s):  
Lifeng Zhang ◽  
Ryan Anderson

The water balance in proton exchange membrane (PEM) fuel cells still remains a topic of much investigation in order to maintain satisfactory cell performance. One specific water management issue relates to the gas-liquid flows that occur when water enters the reactant flow field channels, which are typically microchannels or minichannels. Due to its unique water introduction, the Lockhart-Martinelli (LM) approach has been revised for its applicability in predicting the two-phase pressure drop in these channels where water emerges from a gas diffusion layer perpendicular to the direction of gas flow. In the revised LM approach, the Chisholm parameter C is found not to vary strongly as a function of key fuel cell operating variables (relative humidity, temperature, materials, gas stoichiometry), whereas it does vary as a function of flow regime and current density. A new flow regime map was proposed based on all pressure drop data collected from active fuel cells, where an accumulating flow regime is presented in addition to single-phase, film/droplet, and slug flow. The proposed accumulating regime is linked to water droplet dynamics, namely, water droplet emergence, growth, and detachment. A force balance approach shows when detachment will occur, which clarifies the bounds of the accumulating regime in terms of superficial gas velocity (gas stoichiometry ratio) and liquid velocity (current density). The balance considers different wetting scenarios in the channels and a range of superficial velocities of importance to PEM fuel cells.


Author(s):  
S. Paranjape ◽  
S. Kim ◽  
M. Ishii ◽  
J. Uhle

The objective of the present research is to study the flow regime map, the detailed interfacial structures, and the bubble transport in an adiabatic air-water two-phase flow mixture, flowing upward through a vertical round pipe having 1.27 cm. inner diameter. The flow regime map is obtained by processing the characteristic signals acquired from an impedance void meter, using a self-organized neural network. The local two-phase flow parameters are measured by the state-of-the-art four-sensor conductivity probe at three axial locations in the pipe. The measured local parameters include void fraction (α), interfacial area concentration (ai), bubble frequency (fb), bubble velocity (Ub) and bubble Sauter mean diameter (Dsm). The radial profiles of these parameters and their development along the axial direction reveals the structure of the two phase mixture and the bubble interaction mechanisms.


Sign in / Sign up

Export Citation Format

Share Document