Two-phase flow characteristics of R32 in horizontal multiport minichannels: Flow visualization and development of flow regime map

2018 ◽  
Vol 95 ◽  
pp. 156-164 ◽  
Author(s):  
Daisuke Jige ◽  
Shogo Kikuchi ◽  
Hikaru Eda ◽  
Norihiro Inoue ◽  
Shigeru Koyama
AIChE Journal ◽  
1988 ◽  
Vol 34 (1) ◽  
pp. 137-139 ◽  
Author(s):  
S. B. Reddy Karri ◽  
V. K. Mathur

Author(s):  
S. Paranjape ◽  
S. Kim ◽  
M. Ishii ◽  
J. Uhle

The objective of the present research is to study the flow regime map, the detailed interfacial structures, and the bubble transport in an adiabatic air-water two-phase flow mixture, flowing upward through a vertical round pipe having 1.27 cm. inner diameter. The flow regime map is obtained by processing the characteristic signals acquired from an impedance void meter, using a self-organized neural network. The local two-phase flow parameters are measured by the state-of-the-art four-sensor conductivity probe at three axial locations in the pipe. The measured local parameters include void fraction (α), interfacial area concentration (ai), bubble frequency (fb), bubble velocity (Ub) and bubble Sauter mean diameter (Dsm). The radial profiles of these parameters and their development along the axial direction reveals the structure of the two phase mixture and the bubble interaction mechanisms.


2014 ◽  
Vol 35 (2) ◽  
pp. 93-101
Author(s):  
Monika Wengel ◽  
Barbara Miłaszewicz ◽  
Roman Ulbrich

Abstract Gas-liquid two-phase flow in minichannels has been the subject of increased research interest in the past few years. Evaluation, however, of today’s state of the art regarding hydrodynamics of flow in minichannels shows significant differences between existing test results. In the literature there is no clear information regarding: defining the boundary between minichannels and conventional channels, labelling of flow patterns. The review of literature on the hydrodynamics of gas-liquid flow in minichannels shows that, despite the fact that many research works have been published, the problem of determining the effect of diameter of the minichannel on the hydrodynamics of the flow is still at an early stage. Therefore, the paperpresents the results of research concerning determination of flow regime map for the vertical upward flow in minichannels. The research is based on a comprehensive analysis of the literature data and on the research that has been carried out. Such approach to the mentioned above problems concerning key issues of the two-phase flow in minichannels allowed to determine ranges of occurrence of flow structures with a relatively high accuracy.


2008 ◽  
Vol 66 (1-2) ◽  
pp. 94-98 ◽  
Author(s):  
J.S. Chang ◽  
C. Ayrault ◽  
D. Brocilo ◽  
D. Ewing ◽  
G.D. Harvel ◽  
...  

Author(s):  
Takayoshi Kikuchi ◽  
Tatsuya Hazuku ◽  
Yutaka Fukuhara ◽  
Tomoji Takamasa ◽  
Takashi Hibiki

To evaluate the effect of pipe wall surface wettability on flow characteristics in a vertical upward gas-liquid two-phase flow, a visualization study was performed using an acrylic pipe and a hydrophobic pipe. Such basic flow characteristics as flow patterns, pressure drop and void fraction were investigated in these pipes. In the hydrophobic pipe, an inverted-churn flow regime was observed in a region where the churn flow regime was observed in the acrylic pipe, while a droplet flow regime was observed in the region where an annular flow regime was observed in the acrylic pipe. At a high gas flow rate, the average void fraction in the hydrophobic pipe was higher than in the acrylic pipe. The effect of surface wall wettability on frictional pressure loss was confirmed to be insignificant under the present experimental conditions.


Author(s):  
Siddharth Talapatra ◽  
Kevin Farrell

The ability to predict the liquid-gas two-phase flow regime and void fraction in exchangers and piping is a critical engineering requirement in the process industry. The distribution of the liquid and gas phases depend on many factors including flow conditions, physical properties of the two fluids, and geometry of the flow conduit. The problem of correctly predicting the two-phase distribution is of enormous complexity, and generalized correlations that adequately describe the flow regime and/or the void fraction have not been yet been developed even for the simplest of geometries. While Computational Fluid Dynamics codes that model two-phase flows exist, they are limited in their applicability and usually require a priori knowledge of the flow regime. In this part of a two paper series, we discuss the state-of-the-art in two-phase flow regime studies inside shell-and-tube heat exchangers, while in the second part, we will discuss two-phase flows inside piping. We have performed air-water tests inside a glass shell-and-tube exchanger at HTRI, and by systematically varying various geometrical parameters, compiled the largest flow visualization database inside such exchangers. We have evaluated the best available flow regime maps available in the open literature, and shown how our results help enhance understanding of liquid-gas distribution inside heat exchangers. We have shown how, for a given flow rate, increasing the baffle spacing and reducing baffle-cut enhances two-phase separation. While these results are expected, they have never been quantified before. However, the use of flow visualization limits the liquid and gas phases to water and air mixtures, which limits the range of applicability. Shellside studies using various industrially relevant fluids such as hydrocarbon mixtures, steam water are planned, where non-visual flow regime detection techniques need to be applied.


Sign in / Sign up

Export Citation Format

Share Document