Numerical study on the momentum and heat transfer of porous spheroids under laminar flow

Author(s):  
Haishan Miao ◽  
Hao Zhang ◽  
Xizhong An ◽  
Chunhai Ke ◽  
Aibing Yu
2013 ◽  
Vol 561 ◽  
pp. 460-465
Author(s):  
Dong Hui Zhang ◽  
Jiao Gao

The objective of this paper is to study the characteristic of a circular tube with a built-in arc belt on fluid flow and heat transfer in uniform wall temperature flows. Numerical simulations for hydrodynamically laminar flow was direct ran at Re between 600 and 1800. Preliminary results on velocity and temperature statistics for uniform wall temperature show that, arc belt can swirl the pipe fluid, so that the fluid at the center of the tube and the fluid of the boundary layer of the wall can mix fully, and plays the role of enhanced heat transfer, but also significantly increases the resistance of the fluid and makes the resistance coefficient of the enhanced tube greater than smooth tube. The combination property PEC is all above 1.5.


2010 ◽  
Vol 30 (11-12) ◽  
pp. 1292-1303 ◽  
Author(s):  
Pongjet Promvonge ◽  
Withada Jedsadaratanachai ◽  
Sutapat Kwankaomeng

Author(s):  
Khalid N. Alammar ◽  
Lin-wen Hu

Numerical analysis is performed to examine axisymmetric laminar flow and heat transfer characteristics of colloidal dispersions of nanoparticles in water (nanofluids). Effect of volume fraction on flow and heat transfer characteristics is investigated. Four different materials, Alumina, Copper, Copper Oxide, and Graphite are considered. Heat transfer and property measurements were conducted previously for Alumina nanofluid. The measurements have shown that nanofluids can behave as homogeneous mixtures. It is found that oxide-based nanofluids offer the least heat transfer enhancement compared to elements-based nanofluids. When normalized by friction pressure drop, it is shown that graphite can have the highest effective heat transfer enhancement. For a given volume flow rate, all nanofluids exhibited linear increase in heat transfer enhancement with increasing colloids volume fraction, up to 0.05.


Sign in / Sign up

Export Citation Format

Share Document