Flotation behavior and mechanism of calcium carbonate polymorphs with sodium oleate as collector

2021 ◽  
pp. 117040
Author(s):  
Jingzhong Kuang ◽  
Xiaoyuan Wang ◽  
Mingming Yu ◽  
Weiquan Yuan ◽  
Zheyu Huang ◽  
...  
2018 ◽  
Author(s):  
Bryan C. Chakoumakos ◽  
◽  
Brenda M. Pracheil ◽  
R. Seth Wood ◽  
Alison Loeppky ◽  
...  

2018 ◽  
Vol 54 (11) ◽  
pp. 1803-1814 ◽  
Author(s):  
Junxun Jin ◽  
Yuyang Long ◽  
Huimin Gao ◽  
Zijie Ren

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Michael B. Toffolo ◽  
Giulia Ricci ◽  
Luisa Caneve ◽  
Ifat Kaplan-Ashiri

Abstract In nature, calcium carbonate (CaCO3) in the form of calcite and aragonite nucleates through different pathways including geogenic and biogenic processes. It may also occur as pyrogenic lime plaster and laboratory-precipitated crystals. All of these formation processes are conducive to different degrees of local structural order in CaCO3 crystals, with the pyrogenic and precipitated forms being the least ordered. These variations affect the manner in which crystals interact with electromagnetic radiation, and thus formation processes may be tracked using methods such as X-ray diffraction and infrared spectroscopy. Here we show that defects in the crystal structure of CaCO3 may be detected by looking at the luminescence of crystals. Using cathodoluminescence by scanning electron microscopy (SEM-CL) and laser-induced fluorescence (LIF), it is possible to discern different polymorphs and their mechanism of formation. We were thus able to determine that pyrogenic calcite and aragonite exhibit blue luminescence due to the incorporation of distortions in the crystal lattice caused by heat and rapid precipitation, in agreement with infrared spectroscopy assessments of local structural order. These results provide the first detailed reference database of SEM-CL and LIF spectra of CaCO3 standards, and find application in the characterization of optical, archaeological and construction materials.


2018 ◽  
Vol 486 ◽  
pp. 71-81 ◽  
Author(s):  
Lara Štajner ◽  
Jasminka Kontrec ◽  
Branka Njegić Džakula ◽  
Nadica Maltar-Strmečki ◽  
Milivoj Plodinec ◽  
...  

1970 ◽  
Vol 14 ◽  
pp. 29-37 ◽  
Author(s):  
S. T. Silk ◽  
S. Z. Lewin

AbstractIt is shown that the integrated intensities of diffraction lines from calcite and aragonite powders prepared by precipitation vary markedly, due to variations in sample packing efficiency arising from different degrees of polydispersity in the particle size distributions. Since prolonged grinding to equalize initially divergent distributions changes the polymorph composition, the packing effect imposes the principal limitation on the precision of the x-ray method for certain types of calcium carbonate preparations.


Sign in / Sign up

Export Citation Format

Share Document