lubrication condition
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 68)

H-INDEX

17
(FIVE YEARS 3)

Author(s):  
Li Xiao ◽  
Yingqiang Xu ◽  
Zhiyong Chen

Abstract To improve the fretting wear performance of 18CrNi4A steel, DLC, TiAlN and DLC/TiAlN coatings were deposited on the surface of carburized 18CrNi4A steel, respectively. The microstructure morphologies, chemical compositions, and mechanical properties of these coatings were evaluated. The fretting tribological properties of pad/flat contact pairs for carburized 18CrNi4A steel, DLC, TiAlN and DLC/TiAlN coatings were investigated in different lubricant environments including dry sliding and #RIPP 7254 aviation grease. The results show that DLC, TiAlN and DLC/TiAlN coatings deposited on the carburized 18CrNi4A steel surface can improve surface roughness, hardness, fracture toughness and resistance to plastic deformation. DLC, TiAlN and DLC/TiAlN coatings deposited on the surface of carburized 18CrNi4A steel can make the surface of the substrate have excellent fretting wear properties. DLC and DLC/TiAlN coatings have lower coefficient of friction and better fretting wear resistance than TiAlN coatings in dry sliding condition, and DLC/TiAlN coatings have the lowest wear rate in #RIPP 7254 grease lubrication condition. In addition, the wear mechanisms of carburized 18CrNi4A steel, DLC, TiAlN and DLC/TiAlN coatings in dry sliding and #RIPP 7254 aviation grease conditions were analyzed.


2022 ◽  
Vol 12 (2) ◽  
pp. 618
Author(s):  
Haoyang Cao ◽  
Xun Chen ◽  
Haolin Li ◽  
Chao Shen

Cylindrical surface grinding can create defined textural patterns on a component with high quantity. This paper presents an experimental investigation of the frictional behaviours of ground cylindrical microstructural surfaces under a well lubrication condition. It shows that the coefficient of friction (COF) of microstructural surface is influenced by different workload and rotation speed. The results reveal that conventional surface roughness parameters do not present the influence of surface microstructure on friction performance well. However, the paper presents an interesting discovery that the friction behaviour of microstructural surfaces created by grinding could be controlled by combining dressing and grinding conditions. Such a discovery provides a logic way to reduce surface friction for energy efficiency applications. A few functional relationships have been established to illustrate the influence of microstructural features on friction. It was found that the ground microstructural surface could improve friction performance up to 20% compared to the smoother surfaces without defined surface textural patterns.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yonghong Fu ◽  
Jie Yang ◽  
Hao Wang ◽  
Yuyang He

Purpose This study aims to investigate the efficacy of micro dimple in inhibiting stick-slip phenomenon on the sliding guideway. Design/methodology/approach In this study, micro-dimples were fabricated by laser on surfaces of steel disk and guideway. The disks and guideways were respectively performed pin-on-disk tribological tests and working condition experiments to study differences in lubrication condition and friction stability between textured and untextured surfaces. Findings Micro-dimples help reduce critical sliding speed that allows contact surfaces to enter in hydrodynamic lubrication regime. This increases hydrodynamic lubrication range and narrows speed range where stick-slip phenomenon can occur, enhancing sliding guideway’s adaptability for broader working conditions. Furthermore, friction stability on the textured surface improved, lowering the occurrence possibility of stick-slip phenomenon. Finally, difference between static and kinetic frictions on the textured surface is lower relative to the untextured surface, which decreases the critical velocity when the stick-slip phenomenon occurs. Originality/value The results indicate that laser-textured micro-dimples are significantly conducive to inhibit stick-slip phenomenon, thus providing smoother movement for the guideway and eventually increasing precision of the machine.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zhu Weixin ◽  
Kong Dejun

Abstract NiMo-5%TiC, NiMo-15%TiC, and NiMo-25%TiC coatings were prepared on GCr15 steel by laser cladding (LC). The microstructure and the phases of the obtained coatings were analyzed using ultra-depth-of-field microscopy (UDFM) and X-ray diffraction (XRD), respectively. A ball-on-disk wear test was used to analyze the friction-wear performance of the substrate and the NiMo-TiC coatings under grease-lubrication condition. The results show that the grain shape of NiMo-TiC coatings is dendritic. The wear resistance of NiMo-TiC coatings is improved by the addition of TiC, and the depths of the worn tracks on the substrate and on the NiMo-5%TiC, NiMo-15%TiC, and NiMo-25%TiC coatings are 4.183 μm, 2.164 μm, 1.882 μm, and 1.246 μm, respectively, and the corresponding wear rates are 72.25 μm3/s/N, 32.00 μm3/s/N, 18.10 μm3/s/N, and 7.99 μm3/s/N, respectively; this shows that the NiMo-25%TiC coating has the highest wear resistance among the three kinds of coatings. The wear mechanism of NiMo-TiC coatings is abrasive wear, and the addition of TiC plays a role in resisting wear during the friction process.


Diagnostyka ◽  
2021 ◽  
pp. 51-58
Author(s):  
Andrzej Jałowiecki ◽  
Marek Fidali ◽  
Adrian Krol

2021 ◽  
Author(s):  
Duan Chen ◽  
Changcai Zhao ◽  
Xiaoyi Chen ◽  
Haoyang Li ◽  
Xin Zhang

Abstract Friction and lubrication are important parameters that affect the quality of sheet metal forming, excellent lubrication condition and less harmful friction can reduce local thinning of sheet metal, delay fracture and improve surface quality. Aiming at the poor friction conditions and difficult lubrication in the flange area during deep drawing, an active pressurized forced lubrication deep drawing(FLDD) process was proposed in this paper. A hydraulic system was employed to flush high pressure lubricating oil into the contact gap between die and sheet in the flange area. The high pressure hydrostatic oil film in the contact gap can reduce the real contact area and improve the lubrication condition effectively. The equipment is simple, the cost is low, and lubricating oil pressure can be measured and controlled. Under the conditions of 20kN, 35kN and 50kN blank holder force(BHF), FLDD test of box parts was carried out with 5MPa and 9MPa pressure water-based lubricating oil. The horizontal comparison experiment was conducted with common lubricating media such as polyethylene film(PE film), high-purity molybdenum disulfide particles, vegetable oil and water-based lubricating oil under the same process conditions. Lubrication effect was evaluated by obtaining test data. Test results illustrated that the lubrication effect of high-purity molybdenum disulfide particles was the best and that of vegetable oil was the worst. The lubrication effect of water-based mineral lubricant was significantly improved after pressurization. The maximum forming height was increased by 17.97%, the maximum forming force was reduced by 8.9%, the maximum wall thickness thinning rate was reduced by 7%, and the lubrication effect of 9MPa pressure was superior to that of 5MPa. Although there is still a certain shortfall with special lubricating media such as high-purity molybdenum disulfide, FLDD process has definite application value in improving production environment, pollution control and automatic production.


Sign in / Sign up

Export Citation Format

Share Document