The importance and difficulties of identifying mantle plumes in orogenic belts: An example based on the fragmented large igneous province (LIP) record in the Ural fold belt

2021 ◽  
pp. 106186
Author(s):  
V.N. Puchkov ◽  
R.E. Ernst ◽  
K.S. Ivanov
Lithosphere ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 40-52 ◽  
Author(s):  
Rajesh K. Srivastava ◽  
Fei Wang ◽  
Wenbei Shi ◽  
Anup K. Sinha ◽  
Kenneth L. Buchan

Abstract Two distinct sets of Cretaceous dolerite dikes intrude the Chhotanagpur gneissic complex of eastern India, mostly within the Damodar Valley Gondwanan sedimentary basins. One dike set trends NNE to ENE, whereas the other set, which includes the prominent Salma dike, trends NW to NNW. One dike from each set in the Raniganj Basin was dated using the 40Ar/39Ar method in order to resolve a controversy concerning the emplacement age of the Salma dike. The NE-trending dike yielded a plateau age of 70.5 ± 0.9 Ma, whereas the NNW-trending Salma dike is much older, with a plateau age of 116.0 ± 1.4 Ma. These results demonstrate that the Salma dike was emplaced at ca. 116 Ma and not at ca. 65 Ma, as suggested in an earlier study. Geochemical characteristics of the two dikes are also distinct and indicate that they belong to previously identified high-Ti and low-Ti dolerite groups, respectively. The observed geochemical characteristics of both dike sets are comparable with the geochemistry of basalts of the Kerguelen Plateau, Bunbury Island, and Rajmahal Group I and suggest a connection to mantle plumes. The new age data presented herein indicate that these two magmatic episodes in the eastern Indian Shield were related to the ca. 120–100 Ma Kerguelen mantle plume and its associated Greater Kerguelen large igneous province and the ca. 70–65 Ma Réunion plume and its associated Deccan large igneous province, respectively.


Episodes ◽  
2007 ◽  
Vol 30 (1) ◽  
pp. 32-42 ◽  
Author(s):  
Yi-Gang Xu ◽  
Bin He ◽  
Xiaolong Huang ◽  
Zhenyu Luo ◽  
Sun-Lin Chung ◽  
...  

2020 ◽  
Vol 123 (4) ◽  
pp. 655-668
Author(s):  
N. Lenhardt ◽  
W. Altermann ◽  
F. Humbert ◽  
M. de Kock

Abstract The Palaeoproterozoic Hekpoort Formation of the Pretoria Group is a lava-dominated unit that has a basin-wide extent throughout the Transvaal sub-basin of South Africa. Additional correlative units may be present in the Kanye sub-basin of Botswana. The key characteristic of the formation is its general geochemical uniformity. Volcaniclastic and other sedimentary rocks are relatively rare throughout the succession but may be dominant in some locations. Hekpoort Formation outcrops are sporadic throughout the basin and mostly occur in the form of gentle hills and valleys, mainly encircling Archaean domes and the Palaeoproterozoic Bushveld Complex (BC). The unit is exposed in the western Pretoria Group basin, sitting unconformably either on the Timeball Hill Formation or Boshoek Formation, which is lenticular there, and on top of the Boshoek Formation in the east of the basin. The unit is unconformably overlain by the Dwaalheuwel Formation. The type-locality for the Hekpoort Formation is the Hekpoort farm (504 IQ Hekpoort), ca. 60 km to the west-southwest of Pretoria. However, no stratotype has ever been proposed. A lectostratotype, i.e., the Mooikloof area in Pretoria East, that can be enhanced by two reference stratotypes are proposed herein. The Hekpoort Formation was deposited in a cratonic subaerial setting, forming a large igneous province (LIP) in which short-termed localised ponds and small braided river systems existed. It therefore forms one of the major Palaeoproterozoic magmatic events on the Kaapvaal Craton.


2019 ◽  
Vol 486 (4) ◽  
pp. 460-465
Author(s):  
E. V. Sharkov ◽  
A. V. Chistyakov ◽  
M. M. Bogina ◽  
O. A. Bogatikov ◽  
V. V. Shchiptsov ◽  
...  

Tiksheozero ultramafic-alkaline-carbonatite intrusive complex, like numerous carbonatite-bearing complexes of similar composition, is a part of large igneous province, related to the ascent of thermochemical mantle plume. Our geochemical and isotopic data evidence that ultramafites and alkaline rocks are joined by fractional crystallization, whereas carbonatitic magmas has independent origin. We suggest that origin of parental magmas of the Tiksheozero complex, as well as other ultramafic-alkaline-carbonatite complexes, was provided by two-stage melting of the mantle-plume head: 1) adiabatic melting of its inner part, which produced moderately-alkaline picrites, which fractional crystallization led to appearance of alkaline magmas, and 2) incongruent melting of the upper cooled margin of the plume head under the influence of CO2-rich fluids  that arrived from underlying zone of adiabatic melting gave rise to carbonatite magmas.


2021 ◽  
Vol 358 ◽  
pp. 106185
Author(s):  
Leonid Shumlyanskyy ◽  
Richard E. Ernst ◽  
Aleksander Albekov ◽  
Ulf Söderlund ◽  
Simon A. Wilde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document