Porosity measurements by X-ray computed tomography: Accuracy evaluation using a calibrated object

2017 ◽  
Vol 49 ◽  
pp. 377-387 ◽  
Author(s):  
Petr Hermanek ◽  
Simone Carmignato
Author(s):  
T. F. Johnson ◽  
F. Iacoviello ◽  
J. H. Welsh ◽  
P. R. Shearing ◽  
D. G. Bracewell

AbstractA multiple length scale approach to the imaging and measurement of depth filters using X-ray computed tomography is described. Three different filter grades of varying nominal retention ratings were visualized in 3D and compared quantitatively based on porosity, pore size and tortuosity. Positional based analysis within the filters revealed greater voidage and average pore sizes in the upstream quartile before reducing progressively through the filter from the center to the downstream quartile, with these results visually supported by voidage distance maps in each case. Flow simulation to display tortuous paths that flow may take through internal voidage were examined.Digital reconstructions were capable of identifying individual constituents of voidage, cellulose and perlite inside each depth filter grade, with elemental analysis on upstream and downstream surfaces confirming perlite presence. Achieving an appropriate pixel size was of particular importance when optimizing imaging conditions for all grades examined. A 3 µm pixel size was capable of representing internal macropores of each filter structure; however, for the finest grade, an improvement to a 1 µm pixel size was required in order to resolve micropores and small perlite shards. Enhancing the pixel size resulted in average porosity measurements of 70% to 80% for all grades. Graphical abstract


Author(s):  
Thomas Johnson ◽  
Francesco Iacoviello ◽  
John Welsh ◽  
Paul Shearing ◽  
Daniel Bracewell

A multiple length scale approach to the imaging and measurement of depth filters using X-ray computed tomography is described. Three different filter grades of varying nominal retention ratings were visualized in 3D and compared quantitatively based on porosity, pore size and tortuosity. Positional based analysis within the filters revealed greater voidage and larger average pore sizes in the upstream quartile before reducing progressively through the filter from the center to the downstream quartile, with these results visually supported by voidage distance maps in each case. Flow simulation to display tortuous paths that flow may take through internal voidage were examined. Digital reconstructions were capable of identifying individual constituents of voidage, cellulose and perlite inside each depth filter grade, with elemental analysis on upstream and downstream surfaces confirming perlite presence. Achieving an appropriate pixel size was of particular importance when optimizing imaging conditions for all grades examined. A 3 µm pixel size was capable of representing internal macropores of each filter structure, however for the finest grade an improvement to a 1 µm pixel size was required in order to resolve micropores and small perlite shards. Enhancing pixel size resulted in average porosity measurements of 70% to 80% for all grades.


1999 ◽  
Vol 11 (1) ◽  
pp. 199-211
Author(s):  
J. M. Winter ◽  
R. E. Green ◽  
A. M. Waters ◽  
W. H. Green

Sign in / Sign up

Export Citation Format

Share Document